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Are you aware that all organisms, even the largest, start their life from a

single cell? You may wonder how a single cell then goes on to form such

large organisms. Growth and reproduction are characteristics of cells,

indeed of all living organisms. All cells reproduce by dividing into two,

with each parental cell giving rise to two daughter cells each time they

divide. These newly formed daughter cells can themselves grow and divide,

giving rise to a new cell population that is formed by the growth and

division of a single parental cell and its progeny. In other words, such

cycles of growth and division allow a single cell to form a structure

consisting of millions of cells.

10.1 CELL CYCLE

Cell division is a very important  process in all living organisms. During

the division of a cell, DNA replication and cell growth also take place. All

these processes, i.e., cell division, DNA replication, and cell growth, hence,

have to take place in a coordinated way to ensure correct division and

formation of progeny cells containing intact genomes. The sequence of

events by which a cell duplicates its genome, synthesises the other

constituents of the cell and eventually divides into two daughter cells is

termed cell cycle. Although cell growth (in terms of cytoplasmic increase)

is a continuous process, DNA synthesis occurs only during one specific

stage in the cell cycle. The replicated chromosomes (DNA) are then

distributed to daughter nuclei by a complex series of events during cell

division. These events are themselves under genetic control.
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10.1.1 Phases of Cell Cycle

A typical eukaryotic cell cycle is illustrated by

human cells in culture. These cells divide once

in approximately every 24 hours (Figure 10.1).

However, this duration of cell cycle can vary from

organism to organism and also from cell type

to cell type. Yeast for example, can progress

through the cell cycle in only about 90 minutes.

The cell cycle is divided into two basic

phases:

lllll Interphase

lllll M Phase (Mitosis phase)

The M Phase represents the phase when the

actual cell division or mitosis occurs and the

interphase represents the phase between two

successive M phases. It is significant to note

that in the 24 hour average duration of cell

cycle of a human cell, cell division proper lasts

for only about an hour. The interphase lasts

more than 95% of the duration of cell cycle.

The M Phase starts with the nuclear division, corresponding to the

separation of daughter chromosomes (karyokinesis) and usually ends

with division of cytoplasm (cytokinesis). The interphase, though  called

the resting phase,  is the time during which the cell is preparing for division

by undergoing both cell growth and DNA replication in an orderly manner.

The interphase is divided into three further phases:

lllll G
1
 phase (Gap 1)

lllll S phase  (Synthesis)

lllll G
2
 phase (Gap 2)

 G
1
 phase corresponds to the interval between mitosis and initiation

of DNA replication. During G
1
 phase the cell is metabolically active and

continuously grows but does not replicate its DNA. S or synthesis  phase

marks the period during which DNA synthesis or replication takes place.

During this time the amount of DNA per cell doubles.  If the initial amount

of DNA is denoted as 2C then it increases to 4C. However, there is no

increase in the chromosome number; if the cell had diploid or 2n number

of chromosomes at G
1
, even after S phase the number of chromosomes

remains the same, i.e., 2n.

In animal cells, during the S phase, DNA replication begins in the

nucleus, and the centriole duplicates in the cytoplasm. During the G
2

phase, proteins are synthesised in preparation for mitosis while cell growth

continues.

How do plants and
animals continue to
grow all their lives?
Do all cells in a plant
divide all the time?
Do you think all cells
continue to divide in
all plants and
animals? Can you
tell the name and the
location of tissues
having cells that
divide all their life in
higher plants? Do
animals have similar
m e r i s t e m a t i c
tissues?

Figure 10.1 A diagrammatic view of cell cycle
indicating formation of two cells
from one cell
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Some cells in the adult animals do not appear to exhibit division (e.g.,
heart cells) and many other cells divide only occasionally, as needed to
replace cells that have been lost because of injury or cell death. These
cells that do not divide further exit G

1
 phase to enter an inactive stage

called quiescent stage (G
0
) of the cell cycle. Cells in this stage remain

metabolically active but no longer proliferate unless called on to do so
depending on the requirement of the organism.

In animals, mitotic cell division is only seen in the diploid somatic
cells. Against this, the plants can show mitotic divisions in both haploid
and diploid cells. From your recollection of examples of alternation of
generations in plants (Chapter 3) identify plant species and stages at which
mitosis is seen in haploid cells.

10.2 M PHASE

This is the most dramatic period of the cell cycle, involving a major
reorganisation of virtually all components of the cell. Since the number of
chromosomes in the parent and progeny cells is the same, it is also called as
equational division. Though for convenience mitosis has been divided
into four stages of nuclear division (karyokinesis), it is very essential to
understand that cell division is a progressive process and very clear-cut
lines cannot be drawn between various stages. Karyokinesis involves
following four stages:

lllll Prophase

lllll Metaphase

lllll Anaphase

lllll Telophase

10.2.1 Prophase

Prophase which is the first stage of karyokinesis of mitosis follows the S and
G

2
 phases of interphase. In the S and G

2
 phases the new DNA molecules

formed are not distinct but intertwined. Prophase is marked by the initiation
of condensation of chromosomal material. The chromosomal material becomes
untangled during the process of chromatin condensation (Figure 10.2 a).
The centrosome, which had undergone duplication during S phase of
interphase, now begins to move towards opposite poles of the cell. The
completion of prophase can thus be marked by the following characteristic
events:

lllll Chromosomal material condenses to form compact mitotic
chromosomes. Chromosomes are seen to be composed of two
chattached together at the centromere.

lllll Centrosome which had undergone duplication during interphase,
begins to move towards opposite poles of the cell. Each centrosome
radiates out microtubules called asters. The two asters together

with spindle fibres forms mitotic apparatus.

You have studied
mitosis in onion root
tip cells.  It has 16
chromosomes in
each cell.  Can you
tell how many
chromosomes will
the cell have at G

1

phase, after S phase,
and after M phase?
Also, what will be the
DNA content of the
cells at G

1
, after S

and at G
2
, if the

content after M
phase is 2C?
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Cells at the end of prophase, when viewed under the

microscope, do not show golgi complexes, endoplasmic

reticulum, nucleolus and the nuclear envelope.

10.2.2 Metaphase

The complete disintegration of the nuclear envelope marks

the start of the second phase of mitosis, hence the

chromosomes are spread through the cytoplasm of the cell.

By this stage, condensation of chromosomes is completed

and they can be observed clearly under the microscope. This

then, is the stage at which morphology of chromosomes is

most easily studied. At this stage, metaphase chromosome

is made up of two sister chromatids, which are held together

by the centromere (Figure 10.2 b). Small disc-shaped

structures at the surface of the centromeres are called

kinetochores. These structures serve as the sites of attachment

of spindle fibres (formed by the spindle fibres) to the

chromosomes that are moved into position at the centre of

the cell. Hence, the metaphase is characterised by all the

chromosomes coming to lie at the equator with one chromatid

of each chromosome connected by its kinetochore to spindle

fibres from one pole and its sister chromatid connected by

its kinetochore to spindle fibres from the opposite pole (Figure

10.2 b). The plane of alignment of the chromosomes at

metaphase is referred to as the metaphase plate.  The key

features of metaphase are:

lllll Spindle fibres attach to kinetochores of

chromosomes.

lllll Chromosomes are moved to spindle equator and get

aligned along metaphase plate through spindle fibres

to both poles.

10.2.3 Anaphase

At the onset of anaphase, each chromosome arranged at the

metaphase plate is split simultaneously and the two daughter

chromatids, now referred to as daughter  chromosomes of

the future daughter nuclei, begin their migration towards

the two opposite poles. As each chromosome moves away

from the equatorial plate, the centromere of each chromosome

remains directed towards the pole and hence at the leading

edge, with the arms of the chromosome trailing behind

(Figure 10.2 c). Thus, anaphase stage is characterised by
Figure 10.2 a and b : A diagrammatic
view of stages in mitosis
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the following key events:

lllll Centromeres split and chromatids separate.

lllll Chromatids move to opposite poles.

10.2.4 Telophase

At the beginning of the final stage of karyokinesis, i.e.,

telophase, the chromosomes that have reached their

respective poles decondense and lose their individuality. The

individual chromosomes can no longer be seen and each set

of chromatin material tends to collect at each of the two poles

(Figure 10.2 d). This is the stage which shows the following

key events:

lllll Chromosomes cluster at opposite spindle poles and their

identity is lost as discrete elements.

lllll Nuclear envelope develops around the chromosome

clusters at each pole forming two daughter nuclei.

lllll Nucleolus, golgi complex and ER reform.

10.2.5 Cytokinesis

Mitosis accomplishes not only the segregation of duplicated

chromosomes into daughter nuclei (karyokinesis), but the

cell itself is divided into two daughter cells by the separation

of cytoplasm called cytokinesis at the end of which cell

division gets completed (Figure 10.2 e). In an animal cell,

this is achieved by the appearance of a furrow in the plasma

membrane. The furrow gradually deepens and ultimately

joins in the centre dividing the cell cytoplasm into two. Plant

cells however, are enclosed by a relatively inextensible cell

wall, thererfore they undergo cytokinesis by a different

mechanism. In plant cells, wall formation starts in the centre

of the cell and grows outward to meet the existing lateral

walls. The formation of the new cell wall begins with the

formation of a simple precursor, called the cell-plate that

represents the middle lamella between the walls of two

adjacent cells. At the time of cytoplasmic division, organelles

like mitochondria and plastids get distributed between the

two daughter cells. In some organisms karyokinesis is not

followed by cytokinesis as a result of which multinucleate

condition arises leading to the formation of syncytium (e.g.,

liquid endosperm in coconut).
Figure 10.2 c to e : A diagrammatic
view of stages in Mitosis
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10.3 Significance of Mitosis

Mitosis or the equational division is usually restricted to the diploid cells

only. However, in some lower plants and in some social insects haploid

cells also divide by mitosis. It is very essential to understand the

significance of this division in the life of an organism. Are you aware of

some examples where you have studied about haploid and diploid insects?

Mitosis usually results in the production of diploid daughter cells

with identical genetic complement. The growth of multicellular organisms

is due to mitosis. Cell growth results in disturbing the ratio between the

nucleus and the cytoplasm. It therefore becomes essential for the cell to

divide to restore the nucleo-cytoplasmic ratio. A very significant

contribution of mitosis is cell repair. The cells of the upper layer of the

epidermis, cells of the lining of the gut, and blood cells are being constantly

replaced. Mitotic divisions in the meristematic tissues – the apical and

the lateral cambium, result in a continuous growth of plants throughout

their life.

10.4 MEIOSIS

The production of offspring by sexual reproduction includes the fusion

of two gametes, each with a complete haploid set of chromosomes. Gametes

are formed from specialised diploid cells. This specialised kind of cell

division that reduces the chromosome number by half results in the

production of haploid daughter cells. This kind of division is called

meiosis. Meiosis ensures the production of haploid phase in the life cycle

of sexually reproducing organisms whereas fertilisation restores the diploid

phase. We come across meiosis during gametogenesis in plants and

animals. This leads to the formation of haploid gametes. The key features

of meiosis are as follows:

lllll Meiosis involves two sequential cycles of nuclear and cell division called
meiosis I and meiosis II but only a single cycle of DNA replication.

lllll Meiosis I is initiated after the parental chromosomes have replicated
to produce identical sister chromatids at the S phase.

lllll Meiosis involves pairing of homologous chromosomes and
recombination between non-sister chromatids of homologous
chromosomes.

lllll Four haploid cells are formed at the end of meiosis II.

Meiotic events can be grouped under the following phases:

Meiosis I Meiosis II

Prophase I Prophase II

Metaphase I Metaphase II

Anaphase I Anaphase II

Telophase I Telophase II
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10.4.1 Meiosis I

Prophase I: Prophase of the first meiotic division is typically longer and

more complex when compared to prophase of mitosis. It has been further

subdivided into the following five phases based on chromosomal

behaviour, i.e., Leptotene, Zygotene, Pachytene, Diplotene and Diakinesis.

During leptotene stage the chromosomes become gradually visible

under the light microscope. The compaction of chromosomes continues

throughout leptotene. This is followed by the second stage of prophase

I called zygotene. During this stage chromosomes start pairing together

and this process of association is called synapsis. Such paired

chromosomes are called homologous chromosomes. Electron

micrographs of this stage indicate that chromosome synapsis is

accompanied by the formation of complex structure called

synaptonemal complex. The complex formed by a pair of synapsed

homologous chromosomes is called a bivalent or a tetrad. However,

these are more clearly visible at the next stage. The first two stages of

prophase I are relatively short-lived compared to the next stage that is

pachytene. During this stage, the four chromatids of each bivalent

chromosomes becomes distinct and clearly appears as tetrads. This stage

is characterised by the appearance of recombination nodules, the sites

at which crossing over occurs between non-sister chromatids of the

homologous chromosomes. Crossing over is the exchange of genetic

material between two homologous chromosomes. Crossing over is also

an enzyme-mediated process and the enzyme involved is called

recombinase. Crossing over leads to recombination of genetic material

on the two chromosomes. Recombination between homologous

chromosomes is completed by the end of pachytene, leaving the

chromosomes linked at the sites of crossing over.

The beginning of diplotene is recognised by the dissolution of the

synaptonemal complex and the tendency of the recombined

homologous chromosomes of the bivalents to separate from each other

except at the sites of crossovers. These X-shaped structures, are called

chiasmata. In oocytes of some vertebrates, diplotene can last for

months or years.

The final stage of meiotic prophase I is diakinesis. This is marked by

terminalisation of chiasmata. During this phase the chromosomes are

fully condensed and the meiotic spindle is assembled to prepare the

homologous chromosomes for separation. By the end of diakinesis, the

nucleolus disappears and the nuclear envelope also breaks down.

Diakinesis represents transition to metaphase.

Metaphase I: The bivalent chromosomes align on the equatorial plate

(Figure 10.3). The microtubules from the opposite poles of the spindle

attach to the kinetochore of homologous chromosomes.
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Anaphase I: The homologous chromosomes separate, while sister

chromatids remain associated at their centromeres (Figure 10.3).

Telophase I: The nuclear membrane and nucleolus reappear, cytokinesis

follows and this is called as dyad of cells (Figure 10.3). Although in many

cases the chromosomes do undergo some dispersion, they do not reach

the extremely extended state of the interphase nucleus. The stage between

the two meiotic divisions is called interkinesis and is generally short lived.

There is no replication of DNA during interkinesis. Interkinesis is followed

by prophase II, a much simpler prophase than prophase I.

10.4.2 Meiosis II

Prophase II: Meiosis II is initiated immediately after cytokinesis, usually

before the chromosomes have fully elongated.  In contrast to meiosis I,

meiosis II resembles a normal mitosis. The nuclear membrane disappears

by the end of prophase II (Figure 10.4). The chromosomes again become

compact.

Metaphase II: At this stage the chromosomes align at the equator and

the microtubules from opposite poles of the spindle get attached to the

kinetochores (Figure 10.4) of sister chromatids.

Anaphase II: It begins with the simultaneous splitting of the centromere

of each chromosome  (which was holding the sister chromatids together),

allowing them to move toward opposite poles of the cell (Figure 10.4) by

shortening of microtubules attached to kinetochores.

Figure 10.3 Stages of Meiosis I
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Telophase II: Meiosis ends with telophase II, in which the two

groups of chromosomes once again get enclosed by a nuclear

envelope; cytokinesis follows resulting in the formation of tetrad

of cells i.e., four haploid daughter cells (Figure 10.4).

10.5 SIGNIFICANCE OF MEIOSIS

Meiosis is the mechanism by which conservation of specific

chromosome number of each species is achieved across

generations in sexually reproducing organisms, even though the

process, per se, paradoxically, results in reduction of chromosome

number by half. It also increases the genetic variability in the

population of organisms from one generation to the next. Variations

are very important for the process of evolution.

Figure 10.4 Stages of Meiosis II

SUMMARY

According to the cell theory, cells arise from preexisting cells. The process by

which this occurs is called cell division. Any sexually reproducing organism

starts its life cycle from a single-celled zygote. Cell division does not stop with

the formation of the mature organism but continues throughout its life cycle.
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The stages through which a cell passes from one division to the next is called

the cell cycle. Cell cycle is divided into two phases called (i) Interphase – a

period of preparation for cell division, and (ii) Mitosis (M phase) – the actual

period of cell division. Interphase is further subdivided into G
1
, S and G

2
. G

1

phase is the period when the cell grows and carries out normal metabolism.

Most of the organelle duplication also occurs during this phase. S phase marks

the phase of DNA replication and chromosome duplication. G
2
 phase is the

period of cytoplasmic growth. Mitosis is also divided into four stages namely

prophase, metaphase, anaphase and telophase. Chromosome condensation

occurs during prophase. Simultaneously, the centrioles move to the opposite

poles. The nuclear envelope and the nucleolus disappear and the spindle

fibres start appearing. Metaphase is marked by the alignment of chromosomes

at the equatorial plate. During anaphase the centromeres divide and the

chromatids start moving towards the two opposite poles. Once the chromatids

reach the two poles, the chromosomal elongation starts, nucleolus and the

nuclear membrane reappear. This stage is called the telophase.  Nuclear

division is then followed by the cytoplasmic division and is called cytokinesis.

Mitosis thus, is the equational division in which the chromosome number of

the parent is conserved in the daughter cell.

In contrast to mitosis, meiosis occurs in the diploid cells, which are destined to

form gametes. It is called the reduction division since it reduces the chromosome

number by half while making the gametes. In sexual reproduction when the two

gametes fuse the chromosome number is restored to the value in the parent.

Meiosis is divided into two phases – meiosis I and meiosis II. In the first meiotic

division the homologous chromosomes pair to form bivalents, and undergo crossing

over. Meiosis I has a long prophase, which is divided further into five phases.

These are leptotene, zygotene, pachytene, diplotene and diakinesis. During

metaphase I the bivalents arrange on the equatorial plate. This is followed by

anaphase I in which homologous chromosomes move to the opposite poles with

both their chromatids. Each pole receives half the chromosome number of the

parent cell. In telophase I, the nuclear membrane and nucleolus reappear. Meiosis

II is similar to mitosis. During anaphase II the sister chromatids separate. Thus at

the end of meiosis four haploid cells are formed.

EXERCISES

1. What is the average cell cycle span for a mammalian cell?

2. Distinguish cytokinesis from karyokinesis.

3. Describe the events taking place during interphase.

4. What is Go (quiescent phase) of cell cycle?
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5. Why is mitosis called equational division?

6. Name the stage of cell cycle at which one of the following events occur:

(i) Chromosomes are moved to spindle equator.

(ii) Centromere splits and chromatids separate.

(iii) Pairing between homologous chromosomes takes place.

(iv) Crossing over between homologous chromosomes takes place.

7. Describe the following:

(a) synapsis  (b) bivalent  (c) chiasmata

Draw a diagram to illustrate your answer.

8. How does cytokinesis in plant cells differ from that in animal cells?

9. Find examples where the four daughter cells from meiosis are equal in size and
where they are found unequal in size.

10. Distinguish anaphase of mitosis from anaphase I of meiosis.

11. List the main differences between mitosis and meiosis.

12. What is the significance of meiosis?

13. Discuss with your teacher about

(i) haploid insects and lower plants where cell-division occurs, and

(ii) some haploid cells in higher plants where cell-division does not occur.

14. Can there be mitosis without DNA replication in ‘S’ phase?

15. Can there be DNA replication without cell division?

16. Analyse the events during every stage of cell cycle and notice how the following
two parameters change

(i) number of chromosomes (N) per cell

(ii) amount of DNA content (C) per cell
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UNIT 4

The description of structure and variation of living organisms over a

period of time, ended up as two, apparently irreconcilable perspectives

on biology. The two perspectives essentially rested on two levels of

organisation of life forms and phenomena. One described at organismic

and above level of organisation while the second described at cellular

and molecular level of organisation. The first resulted in ecology and

related disciplines. The second resulted in physiology and biochemistry.

Description of physiological processes, in flowering plants as an

example, is what is given in the chapters in this unit. The processes of

mineral nutrition of plants, photosynthesis, transport, respiration and

ultimately plant growth and development are described in molecular

terms but in the context of cellular activities and even at organism

level. Wherever appropriate, the relation of the physiological processes

to environment is also discussed.

PLANT PHYSIOLOGY

Chapter 11
Transport in Plants

Chapter 12
Mineral Nutrition

Chapter 13
Photosynthesis in Higher
Plants

Chapter 14
Respiration in Plants

Chapter 15
Plant Growth and
Development
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MELVIN CALVIN born in Minnesota in April, 1911, received his

Ph.D. in Chemistry from the University of Minnesota. He served

as Professor of Chemistry at the University of California,

Berkeley.

Just after world war II, when the world was under shock

after the Hiroshima-Nagasaki bombings, and seeing the ill-

effects of radio-activity, Calvin and co-workers put radio-

activity to beneficial use. He along with J.A. Bassham studied

reactions in green plants forming sugar and other substances

from raw materials like carbon dioxide, water and minerals

by labelling the carbon dioxide with C14. Calvin proposed that

plants change light energy to chemical energy by transferring

an electron in an organised array of pigment molecules and

other substances. The mapping of the pathway of carbon

assimilation in photosynthesis earned him Nobel Prize in 1961.

The principles of photosynthesis as established by Calvin

are, at present, being used in studies on renewable resource

for energy and materials and basic studies in solar energy

research.Melvin Calvin
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Have you ever wondered how water reaches the top of tall trees, or for that

matter how and why substances move from one cell to the other, whether

all substances move in a similar way, in the same direction and whether

metabolic energy is required for moving substances.  Plants need to move

molecules over very long distances, much more than animals do; they also

do not have a circulatory system in place.  Water taken up by the roots has

to reach all parts of the plant, up to the very tip of the growing stem.  The

photosynthates or food synthesised by the leaves have also to be moved to

all parts including the root tips embedded deep inside the soil.  Movement

across short distances, say within the cell, across the membranes and from

cell to cell within the tissue has also to take place. To understand some of

the transport processes that take place in plants, one would have to recollect

one’s basic knowledge about the structure of the cell and the anatomy of

the plant body.  We also need to revisit our understanding of diffusion,

besides gaining some knowledge about chemical potential and ions.

When we talk of the movement of substances we need first to define

what kind of movement we are talking about, and also what substances

we are looking at. In a flowering plant the substances that would need to

be transported are water, mineral nutrients, organic nutrients and plant

growth regulators. Over small distances substances move by diffusion

and by cytoplasmic streaming supplemented by active transport.

Transport over longer distances proceeds through the vascular system

(the xylem and the phloem) and is called translocation.

An important aspect that needs to be considered is the direction of

transport. In rooted plants, transport in xylem (of water and minerals) is

essentially unidirectional, from roots to the stems. Organic and mineral

nutrients however, undergo multidirectional transport. Organic

TRANSPORT IN PLANTS

CHAPTER  11

11.1 Means of

Transport

11.2 Plant-Water

Relations

11.3 Long Distance

Transport of

Water

11.4 Transpiration

11.5 Uptake and

Transport of

Mineral

Nutrients

11.6   Phloem

Transport: Flow

from Source to

Sink

2018-19



176 BIOLOGY

compounds synthesised in the photosynthetic leaves are exported to all

other parts of the plant including storage organs.  From the storage organs

they are later re-exported.  The mineral nutrients are taken up by the

roots and transported upwards into the stem, leaves and the growing

regions.  When any plant part undergoes senescence, nutrients may be

withdrawn from such regions and moved to the growing parts.  Hormones

or plant growth regulators and other chemical signals are also transported,

though in very small amounts, sometimes in a strictly polarised or

unidirectional manner from where they are synthesised to other parts.

Hence, in a flowering plant there is a complex traffic of compounds (but

probably very orderly) moving in different directions, each organ receiving

some substances and giving out some others.

11.1 MEANS OF TRANSPORT

11.1.1 Diffusion

Movement by diffusion is passive, and may be from one part of the cell to

the other, or from cell to cell, or over short distances, say, from the inter-

cellular spaces of the leaf to the outside.  No energy expenditure takes place.

In diffusion, molecules move in a random fashion, the net result being

substances moving from regions of higher concentration to regions of lower

concentration.  Diffusion is a slow process and is not dependent on a ‘living

system’. Diffusion is obvious in gases and liquids, but diffusion in solids

rather than of solids is more likely.  Diffusion is very important to plants

since it is the only means for gaseous movement within the plant body.

Diffusion rates are affected by the gradient of concentration, the

permeability of the membrane separating them, temperature and pressure.

11.1.2 Facilitated Diffusion

As pointed out earlier, a gradient must already be present for diffusion to

occur.  The diffusion rate depends on the size of the substances; obviously

smaller substances diffuse faster.  The diffusion of any substance across a

membrane also depends on its solubility in lipids, the major constituent of

the membrane. Substances soluble in lipids diffuse through the membrane

faster.  Substances that have a hydrophilic moiety, find it difficult to pass

through the membrane; their movement has to be facilitated.  Membrane

proteins provide sites at which such molecules cross the membrane.  They

do not set up a concentration gradient: a concentration gradient must

already be present for molecules to diffuse even if facilitated by the proteins.

This process is called facilitated diffusion.

In facilitated diffusion special proteins help move substances across

membranes without expenditure of ATP energy. Facilitated diffusion

cannot cause net transport of molecules from a low to a high concentration

– this would require input of energy.   Transport rate reaches a maximum

when all of the protein transporters are being used (saturation).  Facilitated
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diffusion is very specific: it allows cell to

select substances for uptake.  It is

sensitive to inhibitors which react with

protein side chains.

The proteins form channels in the

membrane for molecules to pass through.

Some channels are always open; others

can be controlled.  Some are large,

allowing a variety of molecules to cross.

The porins are proteins that form large

pores in the outer membranes of the

plastids, mitochondria and some bacteria

allowing molecules up to the size of small

proteins to pass through.

Figure 11.1 shows an extracellular

molecule bound to the transport protein;

the transport protein then rotates and

releases the molecule inside the cell, e.g.,

water channels – made up of eight

different types of aquaporins.

11.1.2.1 Passive symports and

antiports

Some carrier or transport proteins allow

diffusion only if two types of molecules

move together. In a symport, both

molecules cross the membrane in the same

direction; in an antiport, they move in

opposite directions (Figure 11.2). When a

Figure 11.1 Facilitated diffusion

Uniport

Carrier protein

Membrane

Antiport

Symport

A

A

A

B

B

Figure 11.2 Facilitated diffusion
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molecule moves across a membrane independent of other molecules, the

process is called uniport.

11.1.3 Active Transport

Active transport uses energy to transport and pump molecules against a

concentration gradient. Active transport is carried out by specific

membrane-proteins. Hence different proteins in the membrane play a

major role in both active as well as passive transport. Pumps are proteins

that use energy to carry substances across the cell membrane. These

pumps can transport substances from a low concentration to a high

concentration (‘uphill’ transport).  Transport rate reaches a maximum

when all the protein transporters are being used or are saturated.  Like

enzymes the carrier protein is very specific in what it carries across the

membrane.  These proteins are sensitive to inhibitors that react with protein

side chains.

11.1.4 Comparison of Different Transport Processes

Table 11.1 gives a comparison of the different transport mechanisms.

Proteins in the membrane are responsible for facilitated diffusion and

active transport and hence show common characterstics of being highly

selective; they are liable to saturate, respond to inhibitors and are under

hormonal regulation.  But diffusion whether facilitated or not – take place

only along a gradient and do not use energy.

TABLE 11.1 Comparison of Different Transport Mechanisms

Property Simple Facilitated Active
Diffusion Transport Transport

Requires special membrane proteins  No  Yes  Yes

Highly selective  No  Yes  Yes

Transport saturates  No  Yes  Yes

Uphill transport  No  No  Yes

Requires ATP energy  No  No  Yes

11.2 PLANT-WATER RELATIONS

Water is essential for all physiological activities of the plant and plays a

very important role in all living organisms.  It provides the medium in

which most substances are dissolved. The protoplasm of the cells is

nothing but water in which different molecules are dissolved and (several

particles) suspended. A watermelon has over 92 per cent water; most

herbaceous plants have only about 10 to 15 per cent of its fresh weight

as dry matter. Of course, distribution of water within a plant varies –

woody parts have relatively very little water, while soft parts mostly contain
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water.  A seed may appear dry but it still has water – otherwise it would

not be alive and respiring!

Terrestrial plants take up huge amount water daily but most of it is

lost to the air through evaporation from the leaves, i.e., transpiration. A

mature corn plant absorbs almost three litres of water in a day, while a

mustard plant absorbs water equal to its own weight in about 5 hours.

Because of this high demand for water, it is not surprising that water is

often the limiting factor for plant growth and productivity in both

agricultural and natural environments.

11.2.1 Water Potential

To comprehend plant-water relations, an understanding of certain

standard terms is necessary. Water potential (ΨΨΨΨΨw) is a concept

fundamental to understanding water movement.  Solute potential

(ΨΨΨΨΨs) and pressure potential (ΨΨΨΨΨp) are the two main components that

determine water potential.

Water molecules possess kinetic energy. In liquid and gaseous form

they are in  random motion that is both rapid and constant. The greater

the concentration of water in a system, the greater is its kinetic energy or

‘water potential’.  Hence, it is obvious that pure water will have the greatest

water potential.  If two systems containing water are in contact, random

movement of water molecules will result in net movement of water

molecules from the system with higher energy to the one with lower energy.

Thus water will move from the system containing water at higher water

potential
 
to the one having low water potential

.  
This process of movement

of substances down a gradient of free energy is called diffusion. Water

potential is denoted by the Greek symbol Psi or ΨΨΨΨΨ and is expressed in

pressure units such as pascals (Pa).  By convention, the water potential

of pure water at standard temperatures, which is not under any pressure,

is taken to be zero.

If some solute is dissolved in pure water, the solution has fewer free

water molecules and the concentration (free energy) of water decreases,

reducing its water potential. Hence, all solutions have a lower water potential

than pure water; the magnitude of this lowering due to dissolution of a

solute is called solute potential or ΨΨΨΨΨs.  ΨΨΨΨΨs 
 is always negative.  The more

the solute molecules, the lower (more negative) is the Ψs 
.
 
For a solution at

atmospheric pressure (water potential) Ψw 
= (solute potential) 

 
Ψs.

If a pressure greater than atmospheric pressure is applied to pure

water or a solution, its water potential increases. It is equivalent to

pumping water from one place to another. Can you think of any system

in our body where pressure is built up? Pressure can build up in a plant

system
 
when water enters a plant cell due to diffusion causing a pressure

built up against the cell wall, it makes the cell turgid (see section 11.2.2);
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this increases the pressure potential. Pressure potential is usually

positive, though in plants negative potential or tension in the water column
in the xylem plays a major role in water transport up a stem.  Pressure

potential is denoted as ΨΨΨΨΨp.

Water potential of a cell is affected by both solute and pressure
potential.  The relationship between them is as follows:

ΨΨΨΨΨw = ΨΨΨΨΨs + ΨΨΨΨΨp

11.2.2 Osmosis

The plant cell is surrounded by a cell membrane and a cell wall.  The cell

wall is freely permeable to water and substances in solution hence is not

a barrier to movement. In plants the cells usually contain a large central

vacuole, whose contents, the vacuolar sap, contribute to the solute

potential of the cell. In plant cells, the cell membrane and the membrane

of the vacuole, the tonoplast together are important determinants of

movement of molecules in or out of  the cell.

Osmosis is the term used to refer specifically to the diffusion of water across

a differentially- or selectively permeable membrane. Osmosis occurs

spontaneously in response to a driving force. The net direction and rate of osmosis

depends on both the pressure gradient and concentration gradient.  Water

will move from its region of higher chemical  potential (or concentration)  to its

region of lower chemical potential until equilibrium is reached. At equilibrium

the two chambers should have nearly the same water potential.

You may have made a potato osmometer in your earlier classes stage

in school. If the tuber is placed in water, the water enters the cavity in the

potato tuber containing a concentrated solution of sugar due to osmosis.

Study Figure 11.3 in which the two chambers, A and B, containing

solutions are separated by a semi-permeable membrane.

(a) Solution of  which chamber has a lower water potential?

(b) Solution of  which chamber has a lower solute potential?

(c) In which direction will osmosis occur?

(d) Which solution has a higher solute

potential?

(e) At equilibrium which chamber will

have lower water potential?

(f) If one chamber has a Ψ Ψ Ψ Ψ Ψ of – 2000

kPa, and the other – 1000 kPa, which

is the chamber that has the higher

ΨΨΨΨΨ?

(g) What will be the direction of the
movement of water when two
solutions with  Ψw 

= 0.2 MPa and
Ψw 

= 0.1 MPa are separated by a
selectively permeable membrane?

Figure 11.3

A B

Solute
molecule

Water

Semi-permeableSelectively permeable
membrane
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Let us discuss another experiment where a

solution of sucrose in water taken in a funnel is

separated from pure water in a beaker by a

selectively permeable membrane (Figure 11.4).

You can get this kind of a membrane in an egg.

Remove the yolk and albumin through a small

hole at one end of the egg, and place the shell

in dilute solution of hydrochloric acid for a few

hours. The egg shell dissolves leaving the

membrane intact. Water will move into the funnel,

resulting in rise in the level of the solution in the

funnel. This will continue till the equilibrium is

reached. In case sucrose does diffuse out

through the membrane, will this equilibrium be

ever reached?

External pressure can be applied from the

upper part of the funnel such that no water

diffuses into the funnel through the membrane.

This pressure required to prevent water from

diffusing is in fact, the osmotic pressure and this

is the function of the solute concentration; more

the solute concentration, greater will be the

pressure required to prevent water from diffusing

in. Numerically osmotic pressure is equivalent

to the osmotic potential, but the sign is

opposite.Osmotic pressure is the positive

pressure applied, while osmotic potential is

negative.

11.2.3 Plasmolysis

The behaviour of the plant cells (or tissues) with

regard to water movement depends on the

surrounding solution. If the external solution

balances the osmotic pressure of the cytoplasm,

it is said to be isotonic.  If the external solution

is more dilute than the cytoplasm, it is

hypotonic and if the external solution is more

concentrated, it is hypertonic. Cells swell in

hypotonic solutions and shrink in hypertonic

ones.

Plasmolysis occurs when water moves out of

the cell and the cell membrane of a plant cell

shrinks away from its cell wall.  This occurs when

Figure 11.4 A demonstration of osmosis. A
thistle funnel is filled with
sucrose solution and kept
inverted in a beaker containing
water. (a) Water will diffuse
across the membrane (as
shown by arrows) to raise the
level of the solution in the
funnel (b) Pressure can be
applied as shown to stop the
water movement into the
funnel

Sucrose
solution

Membrane

water

(a) (b)

Pressure
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the cell (or tissue) is placed in a solution that is hypertonic (has more solutes)

to the protoplasm. Water moves out; it is first lost from  the cytoplasm and

then from the vacuole. The water when drawn out of the cell through

diffusion into the extracellular (outside cell) fluid causes the protoplast to

shrink away from the walls. The cell is said to be plasmolysed. The movement

of water occurred across the membrane moving from an area of high water

potential (i.e., the cell) to an area of lower water potential outside the cell

(Figure 11.5).  

What occupies the space between the cell wall and the shrunken

protoplast in the plasmolysed cell?

When the cell (or tissue) is placed in an isotonic solution, there is no

net flow of water towards the inside or outside.  If the external solution

balances the osmotic pressure of the cytoplasm it is said to be isotonic.

When water flows into the cell and out of the cell and are in equilibrium,

the cells are said to be flaccid. 

The process of plasmolysis is usually reversible. When the cells are

placed in a hypotonic solution (higher water potential or dilute solution

as compared to the cytoplasm), water diffuses into the cell causing the

cytoplasm to build up a pressure against the wall, that is called turgor

pressure. The pressure exerted by the protoplasts due to entry of water

against the rigid walls is called pressure potential ΨΨΨΨΨp.
. Because of the

rigidity of the cell wall, the cell does not rupture.  This turgor pressure is

ultimately responsible for enlargement and extension growth of cells.

What would be the ΨΨΨΨΨp
 of a flaccid cell? Which organisms other than

plants possess cell wall ?

11.2.4 Imbibition

Imbibition is a special type of diffusion when water is absorbed by

solids – colloids – causing them to increase in volume.  The classical

Figure 11.5 Plant cell plasmolysis
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examples of imbibition are absorption of water by seeds and dry wood.

The pressure that is produced by the swelling of wood had been used by

prehistoric man to split rocks and boulders.  If it were not for the pressure

due to imbibition, seedlings would not have been able to emerge out of

the soil into the open; they probably would not have been able to establish!

Imbibition is also diffusion since water movement is along a

concentration gradient; the seeds and other such materials have almost no

water hence they absorb water easily.  Water potential gradient between

the absorbent and the liquid imbibed is essential for imbibition.  In addition,

for any substance to imbibe any liquid, affinity between the adsorbant and

the liquid is also a pre-requisite.

11.3 LONG DISTANCE TRANSPORT OF WATER

At some earlier stage you might have carried out an experiment where

you had placed a twig bearing white flowers in coloured water and had

watched it turn colour. On examining the cut end of the twig after a few

hours you had noted the region through which the coloured water moved.

That experiment very easily demonstrates that the path of water movement

is through the vascular bundles, more specifically, the xylem. Now we

have to go further and try and understand the mechanism of movement

of water and other substances up a plant.

Long distance transport of substances within a plant cannot be by

diffusion alone.  Diffusion is a slow process. It can account for only short

distance movement of molecules. For example, the movement of a molecule

across a typical plant cell (about 50 µm) takes approximately 2.5 s. At this

rate, can you calculate how many years it would take for the movement

of molecules over a distance of 1 m within a plant by diffusion alone?

In large and complex organisms, often substances have to be moved

to long distances. Sometimes the sites of production or absorption and

sites of storage are too far from each other; diffusion or active transport

would not suffice. Special long distance transport systems become

necessary so as to move substances across long distances and at a much

faster rate. Water and minerals, and food are generally moved by a mass

or bulk flow system. Mass flow is the movement of substances in bulk or

en masse from one point to another as a result of pressure differences

between the two points. It is a characteristic of mass flow that substances,

whether in solution or in suspension, are swept along at the same pace,

as in a flowing river. This is unlike diffusion where different substances

move independently depending on their concentration gradients. Bulk

flow can be achieved either through a positive hydrostatic pressure

gradient (e.g., a garden hose) or a negative hydrostatic pressure gradient

(e.g., suction through a straw).
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The bulk movement of substances through the conducting or vascular

tissues of plants is called translocation.

Do you remember studying cross sections of roots, stems and leaves

of higher plants and studying the vascular system? The higher plants

have highly specialised vascular tissues – xylem and phloem. Xylem is

associated with translocation of mainly water, mineral salts, some organic

nitrogen and hormones, from roots to the aerial parts of the plants. The

phloem translocates a variety of organic and inorganic solutes, mainly

from the leaves to other parts of the plants.

11.3.1 How do Plants Absorb Water?

We know that the roots absorb most of the water that goes into plants;

obviously that is why we apply water to the soil and not on the leaves.

The responsibility of absorption of water and minerals is more specifically

the function of the root hairs that are present in millions at the tips of the

roots.  Root hairs are thin-walled slender extensions of root epidermal

cells that greatly increase the surface area for absorption.  Water is

absorbed along with mineral solutes, by the root hairs, purely by diffusion.

Once water is absorbed by the root hairs, it can move deeper into root

layers by two distinct pathways:

• apoplast pathway

• symplast pathway

The apoplast is the system of adjacent cell walls that is continuous

throughout the plant, except at the casparian strips of the endodermis

in the roots (Figure 11.6).  The apoplastic movement of water occurs

exclusively through the intercellular spaces and the walls of the cells.

Movement through the apoplast does not involve crossing the cell

Figure 11.6 Pathway of water movement in the root
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membrane. This movement is dependent on the gradient. The apoplast

does not provide any barrier to water movement and water movement is

through mass flow.  As water evaporates into the intercellular spaces or

the atmosphere, tension develop in the continuous stream of water in the

apoplast, hence mass flow of water occurs due to the adhesive and cohesive

properties of water.

The symplastic system is the system of interconnected protoplasts.

Neighbouring cells are connected through cytoplasmic strands that

extend through plasmodesmata.  During symplastic movement, the water

travels through the cells – their  cytoplasm; intercellular movement is

through the plasmodesmata.  Water has to enter the cells through the

cell membrane, hence the movement is relatively slower. Movement is again

down a potential gradient.  Symplastic movement may be aided by

cytoplasmic streaming. You may have observed cytoplasmic streaming

in cells of the Hydrilla leaf; the movement of chloroplast due to streaming

is easily visible.

Most of the water flow in the roots occurs via the apoplast since the

cortical cells are loosely packed, and hence offer no resistance to water

movement.  However, the inner boundary of the cortex, the endodermis,

is impervious to water because of a band of suberised  matrix called the

casparian strip.  Water molecules are unable to penetrate the layer, so

they are directed to wall regions that are not suberised, into the cells

proper through the membranes. The water then moves through the

symplast and again crosses a membrane to reach the cells of the xylem.

The movement of water through the root layers is ultimately symplastic

in the endodermis. This is the only

way water and other solutes can

enter the vascular cylinder.

Once inside the xylem, water is

again free to move between cells as

well as through them. In young

roots, water enters directly into the

xylem vessels and/or tracheids.

These are non-living conduits and

so are parts of the apoplast. The

path of water and mineral ions into

the root vascular system is

summarised in Figure 11.7.

Some plants have additional

structures associated with them

that help in water (and mineral)

absorption. A mycorrhiza is a

symbiotic association of a fungus

with a root system.  The fungal

Pericycle

PhloemCasparian
stripApoplastic

path

Symplastic
path

Endodermis Xylem

Cortex

Figure 11.7 Symplastic and apoplastic pathways of
water and ion absorption and movement in
roots
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filaments form a network around the young root or they penetrate the

root cells.  The hyphae have a very large surface area that absorb mineral

ions and water from the soil from a much larger volume of soil that perhaps

a root cannot do. The fungus provides minerals and water to the roots, in

turn the roots provide sugars and N-containing compounds to the

mycorrhizae. Some plants have an obligate association with the

mycorrhizae.  For example, Pinus seeds cannot germinate and establish

without the presence of mycorrhizae.

11.3.2 Water Movement up a Plant

We looked at how plants absorb water from the soil, and move it into the

vascular tissues. We now have to try and understand how this water is

transported to various parts of the plant. Is the water movement active, or

is it still passive? Since the water has to be moved up a stem against

gravity, what provides the energy for this?

11.3.2.1 Root Pressure

As various ions from the soil are actively transported into the vascular

tissues of the roots, water follows (its potential gradient) and increases

the pressure inside the xylem.  This positive pressure is called root

pressure, and can be responsible for pushing up water to small heights

in the stem.  How can we see that root pressure exists? Choose a small

soft-stemmed plant and on a day, when there is plenty of atmospheric

moisture, cut the stem horizontally near the base with a sharp blade,

early in the morning.  You will soon see drops of solution ooze out of the

cut stem; this comes out due to the positive root pressure. If you fix a

rubber tube to the cut stem as a sleeve you can actually collect and

measure the rate of exudation, and also determine the composition of the

exudates.  Effects of root pressure is also observable at night and early

morning when evaporation is low, and excess water collects in the form of

droplets around special openings of veins near the tip of grass blades,

and leaves of many herbaceous parts.  Such water loss in its liquid phase

is known as guttation.

Root pressure can, at best, only provide a modest push in the overall

process of water transport. They obviously do not play a major role in

water movement up tall trees.  The greatest contribution of root pressure

may be to re-establish the continuous chains of water molecules in the

xylem which often break under the enormous tensions created by

transpiration. Root pressure does not account for the majority of water

transport; most plants meet their need by transpiratory pull.

11.3.2.2 Transpiration pull

Despite the absence of a heart or a circulatory system in plants, the

upward flow of water through the xylem in plants can achieve fairly high
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rates, up to 15 metres per hour. How is this movement accomplished? A

long standing question is, whether water is ‘pushed’ or ‘pulled’ through

the plant. Most researchers agree that water is mainly ‘pulled’ through

the plant, and that the driving force for this process is transpiration from

the leaves. This is referred to as the cohesion-tension-transpiration

pull model of water transport. But, what generates this transpirational pull?

Water is transient in plants. Less than 1 per cent of the water reaching

the leaves is used in photosynthesis and plant growth. Most of it is lost

through the stomata in the leaves. This water loss is known as

transpiration.

You have studied transpiration in an earlier class by enclosing a healthy

plant in polythene bag and observing the droplets of water formed inside

the bag.  You could also study water loss from a leaf using cobalt chloride

paper, which turns colour on absorbing water.

11.4 TRANSPIRATION

Transpiration is the evaporative loss of water by plants. It occurs mainly

through stomata (sing. : stoma). Besides  the loss of water vapour in

transpiration, exchange of oxygen and carbon dioxide in the leaf also occurs

through these stomata.  Normally stomata are open in the day time and

close during the night. The immediate cause of the opening or closing of

stomata is a change in the turgidity of the guard cells. The inner wall of

each guard cell, towards the pore or stomatal aperture, is thick and elastic.

When turgidity increases within the two guard cells flanking each stomatal

aperture or pore, the thin outer walls bulge out and force the inner walls

into a crescent shape. The opening of the stoma is also aided due to the

orientation of the microfibrils in the cell walls of the guard cells. Cellulose

microfibrils are oriented radially rather than longitudinally making it easier

for the stoma to open.  When the guard cells lose turgor, due to water loss

(or water stress) the elastic inner walls regain their original shape, the guard

cells become flaccid and the stoma closes.

Usually the lower surface of a dorsiventral (often dicotyledonous) leaf

has a greater number of stomata while in

an isobilateral (often monocotyledonous)

leaf they are about equal on both surfaces.

Transpiration is affected by several

external factors: temperature, light,

humidity, wind speed. Plant factors that

affect transpiration include number and

distribution of stomata, per cent of open

stomata, water status of the plant, canopy

structure etc. Figure11.8  A stomatal aperture with guard cells
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The transpiration driven ascent of xylem sap depends mainly on the

following physical properties of water:

• Cohesion – mutual attraction between water molecules.

• Adhesion – attraction of water molecules to polar surfaces (such

as the surface of tracheary elements).

• Surface Tension – water molecules are attracted to each other in

the liquid phase more than to water in the gas phase.

These properties give water high tensile strength, i.e., an ability to

resist a pulling force, and high capillarity, i.e., the ability to rise in thin

tubes. In plants capillarity is aided by the small diameter of the tracheary

elements – the tracheids and vessel elements.

The process of photosynthesis requires water. The system of xylem

vessels from the root to the leaf vein can supply the needed water.  But

what force does a plant use to move water molecules into the leaf

parenchyma cells where they are needed? As water evaporates through

the stomata, since the thin film of water over the cells is continuous, it

results in pulling of  water, molecule by molecule, into the leaf from the

xylem. Also, because of lower concentration of water vapour in the

atmosphere as compared to the substomatal cavity and intercellular

spaces, water diffuses into the surrounding air. This creates a ‘pull’

(Figure 11.9).

Measurements reveal that the forces generated by transpiration can

create pressures sufficient to lift a xylem sized column of water over 130

metres high.

Xylem

Phloem

Diffusion into
surrounding air

Stoma
Guard Cell

Palisade

Figure11.9 Water movement in the leaf. Evaporation from the leaf sets up
a pressure gradient between the outside air and the air spaces of the
leaf. The gradient is transmitted into the photosynthetic cells and on
the water-filled xylem in the leaf vein.

Stomatal
pore
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11.4.1 Transpiration and Photosynthesis – a Compromise

Transpiration has more than one purpose; it

• creates transpiration pull for absorption and transport of plants

• supplies water for photosynthesis

• transports minerals from the soil to all parts of the plant

• cools leaf surfaces, sometimes 10 to 15 degrees, by evaporative

cooling

• maintains the shape and structure of the plants by keeping cells

turgid

An actively photosynthesising plant has an insatiable need for water.

Photosynthesis is limited by available water which can be swiftly depleted

by transpiration. The humidity of rainforests is largely due to this vast

cycling of water from root to leaf to atmosphere and back to the soil.

The evolution of the C
4 
photosynthetic system is probably one of the

strategies for maximising the availability of CO
2
 while minimising water

loss.  C
4
 plants are twice as efficient as C

3
 plants in terms of fixing carbon

dioxide (making sugar). However, a C
4
 plant loses only half as much water

as a C
3
 plant for the same amount of CO

2
 fixed.

11.5 UPTAKE AND TRANSPORT OF MINERAL NUTRIENTS

Plants obtain their carbon and most of their oxygen from CO
2
 in the

atmosphere. However, their remaining nutritional requirements are

obtained from water and minerals in the soil.

11.5.1 Uptake of Mineral Ions

Unlike water, all minerals cannot be passively absorbed by the roots.

Two factors account for this: (i) minerals are present in the soil as charged

particles (ions) which cannot move across cell membranes and (ii) the

concentration of minerals in the soil is usually lower than the concentration

of minerals in the root. Therefore, most minerals must enter the root by

active absorption into the cytoplasm of epidermal cells. This needs energy

in the form of ATP. The active uptake of ions is partly responsible for the

water potential gradient in roots, and therefore for the uptake of water by

osmosis. Some ions also move into the epidermal cells passively.

Ions are absorbed from the soil by both passive and active transport.

Specific proteins in the membranes of root hair cells actively pump ions

from the soil into the cytoplasms of the epidermal cells. Like all cells, the

endodermal cells have many transport proteins embedded in their plasma

membrane; they let some solutes cross the membrane, but not others.

Transport proteins of endodermal cells are control points, where a plant

adjusts the quantity and types of solutes that reach the xylem. Note

that the root endodermis because of the layer of suberin has the ability to

actively transport ions in one direction only.
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11.5.2 Translocation of Mineral Ions

After the ions have reached xylem through active or passive uptake, or a

combination of the two, their further transport up the stem to all parts of

the plant is through the transpiration stream.

The chief sinks for the mineral elements are the growing regions of the

plant, such as the apical and lateral meristems, young leaves, developing

flowers, fruits and seeds, and the storage organs.  Unloading of mineral

ions occurs at the fine vein endings through diffusion and active uptake

by these cells.

Mineral ions are frequently remobilised, particularly from older,

senescing parts.  Older dying leaves export much of their mineral content

to younger leaves.  Similarly, before leaf fall in decidous plants, minerals

are removed to other parts. Elements most readily mobilised are

phosphorus, sulphur, nitrogen and potassium.  Some elements that are

structural components like calcium are not remobilised.

An analysis of the xylem exudates shows that though some of the

nitrogen travels as inorganic ions, much of it is carried in the organic

form as amino acids and related compounds. Similarly, small amounts

of P and S are carried as organic compounds.  In addition, small amount

of exchange of materials does take place between xylem and phloem.

Hence, it is not that we can clearly make a distinction and say categorically

that xylem transports only inorganic nutrients while phloem transports

only organic materials, as was traditionally believed.

11.6   PHLOEM TRANSPORT: FLOW FROM SOURCE TO SINK

Food, primarily sucrose, is transported by the vascular tissue phloem

from a source to a sink. Usually the source is understood to be that

part of the plant which synthesises the food, i.e., the leaf, and sink, the

part that needs or stores the food.  But, the source and sink may be

reversed depending on the season, or the plant’s needs. Sugar stored

in roots may be mobilised to become a source of food in the early spring

when the buds of trees, act as sink; they need energy for growth and

development of the photosynthetic apparatus. Since the source-sink

relationship is variable, the direction of movement in the phloem can

be upwards or downwards, i.e., bi-directional. This contrasts with

that of the xylem where the movement is always unidirectional, i.e.,

upwards. Hence, unlike one-way flow of water in transpiration, food

in phloem sap can be transported in any required direction so long

as there is a source of sugar and a sink able to use, store or remove

the sugar.

Phloem sap is mainly water and sucrose, but other sugars, hormones

and amino acids are also transported or translocated through phloem.
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11.6.1 The Pressure Flow or Mass Flow Hypothesis

The accepted mechanism used for the translocation of sugars from source

to sink is called the pressure flow hypothesis. (see Figure 11.10). As

glucose is prepared at the source (by photosynthesis) it is converted to

sucrose (a dissacharide). The sugar is then moved in the form of sucrose

into the companion cells and then into the living phloem sieve tube cells

by active transport. This process of loading at the source produces a

hypertonic condition in the phloem. Water in the adjacent xylem moves

into the phloem by osmosis. As osmotic pressure builds up the phloem

sap will move to areas of lower pressure.  At the sink osmotic pressure

must be reduced. Again active transport is necessary to move the sucrose

out of the phloem sap and into the cells which will use the sugar –

converting it into energy, starch, or cellulose. As sugars are removed, the

osmotic pressure decreases and water moves out of the phloem.

To summarise, the movement of sugars in the phloem begins at the

source, where sugars are loaded (actively transported) into a sieve tube.

Loading of the phloem sets up a water potential gradient that facilitates

the mass movement in the phloem.

Phloem tissue is composed of sieve tube cells, which form long columns

with holes in their end walls called sieve plates. Cytoplasmic strands pass

through the holes in the sieve plates, so forming continuous filaments. As

hydrostatic pressure in the sieve tube of phloem increases, pressure flow

begins, and the sap moves through the phloem. Meanwhile, at the sink,

incoming sugars are actively transported out of the phloem and removed

Sugars leave sieve tube
for metabolism and

storage; water follows
by osmosis

=High

Phloem

turgor
pressure

Root

Sugars enter sieve tubes;
water follows by osmosis

Sugar solution flows
to regions of low
turgor pressure

Tip of stem

Sugars leave sieve tubes;
water follows by osmosis

Figure11.10 Diagrammatic presentation of mechanism of translocation
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as complex carbohydrates. The loss of solute produces a high water

potential in the phloem, and water passes out, returning eventually to xylem.

A simple experiment, called girdling, was used to identify the tissues

through which food is transported. On the trunk of a tree a ring of bark

up to a depth of the phloem layer, can be carefully removed.  In the absence

of downward movement of food the portion of the bark  above the ring on

the stem becomes swollen after a few weeks.  This simple experiment

shows that phloem is the tissue responsible for translocation of food; and

that transport takes place in one direction, i.e., towards the roots. This

experiment can be performed by you easily.

SUMMARY

Plants obtain a variety of inorganic elements (ions) and salts from their

surroundings especially from water and soil. The movement of these nutrients

from environment into the plant as well as from one plant cell to another plant cell

essentially involves movement across a cell membrane. Transport across cell

membrane can be through diffusion, facilitated transport or active transport. Water

and minerals absorbed by roots are transported by xylem and the organic material

synthesised in the leaves is transported to other parts of plant through phloem.

Passive transport (diffusion, osmosis) and active transport are the two modes

of nutrient transport across cell membranes in living organisms. In passive

transport,  nutrients move across the membrane by diffusion, without any use of

energy as it is always down the concentration gradient and hence entropy driven.

This diffusion of substances depends on their size, solubility in water or organic

solvents. Osmosis is the special type of diffusion of water across a selectively

permeable membrane which depends on pressure gradient and concentration

gradient. In active transport, energy in the form of ATP is utilised to pump

molecules against a concentration gradient across membranes. Water potential is

the potential energy of water molecules which helps in the movement of water. It is

determined by solute potential and pressure potential. The osmotic behaviour of

cells depends on the surrounding solution. If the surrounding solution of the cell

is hypertonic, it gets plasmolysed. The absorption of water by seeds and drywood

takes place by a special type of diffusion called imbibition.

In higher plants, there is a vascular system comprising of xylem and phloem,

responsible for translocation. Water minerals and food cannot be moved within

the body of a plant by diffusion alone. They are therefore, transported by a mass

flow system – movement of substance in bulk from one point to another as a

result of pressure differences between the two points.

Water absorbed by root hairs moves into the root tissue by two distinct

pathways, i.e., apoplast and symplast. Various ions, and water from soil can be

transported upto a small height in stems by root pressure. Transpiration pull

model is the most acceptable to explain the transport of water. Transpiration is
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the loss of water in the form of vapours from the plant parts through stomata.

Temperature, light, humidity, wind speed and number of stomata affect the rate

of transpiration. Excess water is also removed through tips of leaves of plants by

guttation.

Phloem is responsible for transport of food (primarily) sucrose from the source

to the sink. The translocation in phloem is bi-directional; the source-sink

relationship is variable. The translocation in phloem is explained by the pressure-

flow hypothesis.

EXERCISES

1. What are the factors affecting the rate of diffusion?

2. What are porins? What role do they play in diffusion?

3. Describe the role played by protein pumps during active transport in plants.

4. Explain why pure water has the maximum water potential.

5. Differentiate between the following:

(a) Diffusion and Osmosis

(b) Transpiration and Evaporation

(c) Osmotic Pressure and Osmotic Potential

(d) Imbibition and Diffusion

(e) Apoplast and Symplast pathways of movement of water in plants.

(f) Guttation and Transpiration.

6. Briefly describe water potential. What are the factors affecting it?

7. What happens when a pressure greater than the atmospheric pressure is applied

to pure water or a solution?

8. (a) With the help of well-labelled diagrams, describe the process of plasmolysis

in plants,  giving appropriate examples.

(b) Explain what will happen to a plant cell if it is kept in a solution having

higher water  potential.

9. How is the mycorrhizal association helpful in absorption of water and minerals

in plants?

10. What role does root pressure play in water movement in plants?

11. Describe transpiration pull model of water transport in plants. What are the

factors influencing transpiration? How is it useful to plants?

12. Discuss the factors responsible for ascent of xylem sap in plants.

13. What essential role does the root endodermis play during mineral absorption in

plants?

14. Explain why xylem transport is unidirectional and phloem transport

bi-directional.

15. Explain pressure flow hypothesis of translocation of sugars in plants.

16. What causes the opening and closing of guard cells of stomata during

transpiration?
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The basic needs of all living organisms are essentially the same. They

require macromolecules, such as carbohydrates, proteins and fats, and

water and minerals for their growth and development.

This chapter focusses mainly on inorganic plant nutrition, wherein

you will study the methods to identify elements essential to growth and

development of plants and the criteria for establishing the essentiality.

You will also study the role of the essential elements, their major deficiency

symptoms and the mechanism of absorption of these essential elements.

The chapter also introduces you briefly to the significance and the

mechanism of biological nitrogen fixation.

12.1 METHODS TO STUDY THE MINERAL REQUIREMENTS OF PLANTS

In 1860, Julius von Sachs, a prominent German botanist, demonstrated,

for the first time, that plants could be grown to maturity in a defined

nutrient solution in complete absence of soil. This technique of growing

plants in a nutrient solution is known as hydroponics. Since then, a

number of improvised methods have been employed to try and determine

the mineral nutrients essential for plants. The essence of all these methods

involves the culture of plants in a soil-free, defined mineral solution. These

methods require purified water and mineral nutrient salts. Can you

explain why is this so essential?

After a series of experiments in which the roots of the plants were

immersed in nutrient solutions and wherein an element was added /

substituted / removed or given in varied concentration, a mineral solution
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suitable for the plant growth was obtained. By this

method, essential elements were identified and

their deficiency symptoms discovered. Hydroponics

has been successfully employed as a technique for

the commercial production of vegetables such as

tomato, seedless cucumber and lettuce. It must be

emphasised that the nutrient solutions must be

adequately aerated to obtain the optimum growth.

What would happen if solutions were poorly

aerated? Diagrammatic views of the hydroponic

technique is given in Figures 12.1 and 12.2.

12.2 ESSENTIAL MINERAL ELEMENTS

Most of the minerals present in soil can enter plants

through roots. In fact, more than sixty elements of

the 105 discovered so far are found in different

plants. Some plant species accumulate selenium,

some others gold, while some plants growing near

nuclear test sites take up radioactive strontium.

There are techniques that are able to detect the

minerals even at a very low concentration (10-8 g/

mL). The question is, whether all the diverse mineral

elements present in a plant, for example, gold and

selenium as mentioned above, are really necessary

for plants? How do we decide what is essential for

plants and what is not?

12.2.1 Criteria for Essentiality

The criteria for essentiality of an element are given

below:

(a) The element must be absolutely necessary for

supporting normal growth and reproduction.

In the absence of the element the plants do not

complete their life cycle or set the seeds.

(b) The requirement of the element must be specific

and not replaceable by another element. In

other words, deficiency of any one element

cannot be met by supplying some other

element.

(c) The element must be directly involved in the

metabolism of the plant.

Figure 12.1  Diagram of a typical set-up for
nutrient solution culture

Figure 12.2 Hydroponic plant production.
Plants are grown in a tube or
trough placed on a slight
incline. A pump circulates a
nutrient solution from a
reservoir to the elevated end of
the tube. The solution flows
down the tube and returns to
the reservoir due to gravity.
Inset shows a plant whose
roots are continuously bathed
in aerated nutrient solution.
The arrows indicates the
direction of the flow.

Nutrient
solution Pump
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Based upon the above criteria only a few elements have been found to

be absolutely essential for plant growth and metabolism. These elements

are further divided into two broad categories based on their quantitative

requirements.

(i) Macronutrients, and

(ii) Micronutrients

Macronutrients are generally present in plant tissues in large amounts

(in excess of 10 mmole Kg –1 of dry matter). The macronutrients include

carbon, hydrogen, oxygen, nitrogen, phosphorous, sulphur, potassium,

calcium and magnesium. Of these, carbon, hydrogen and oxygen are

mainly obtained from CO
2
 and H

2
O, while the others are absorbed from

the soil as mineral nutrition.

Micronutrients or trace elements, are needed in very small amounts

(less than 10 mmole Kg –1 of dry matter). These include iron, manganese,

copper, molybdenum, zinc, boron, chlorine and nickel.

In addition to the 17 essential elements named above, there are some

beneficial elements such as sodium, silicon, cobalt and selenium. They

are required by higher plants.

Essential elements can also be grouped into four broad categories on

the basis of their diverse functions. These categories are:

(i) Essential elements as components of biomolecules and hence

structural elements of cells (e.g., carbon, hydrogen, oxygen and

nitrogen).

(ii) Essential elements that are components of energy-related chemical

compounds in plants (e.g., magnesium in chlorophyll and

phosphorous in ATP).

(iii) Essential elements that activate or inhibit enzymes, for example

Mg2+ is an activator for both ribulose bisphosphate carboxylase-

oxygenase and phosphoenol pyruvate carboxylase, both of which

are critical enzymes in photosynthetic carbon fixation; Zn2+ is an

activator of alcohol dehydrogenase and Mo of nitrogenase during

nitrogen metabolism. Can you name a few more elements that

fall in this category? For this, you will need to recollect some of

the biochemical pathways you have studied earlier.

(iv) Some essential elements can alter the osmotic potential of a cell.

Potassium plays an important role in the opening and closing of

stomata. You may recall the role of minerals as solutes in

determining the water potential of a cell.

12.2.2 Role of Macro- and Micro-nutrients

Essential elements perform several functions. They participate in various

metabolic processes in the plant cells such as permeability of cell
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membrane, maintenance of osmotic concentration of cell sap, electron-

transport systems, buffering action, enzymatic activity and act as major

constituents of macromolecules and co-enzymes.

Various forms and functions of essential nutrient elements are given

below.

Nitrogen: This is the essential nutrient element required by plants in the

greatest amount. It is absorbed mainly as NO
3
–  though some are also taken

up as NO
2
–  or NH

4
+. Nitrogen is required by all parts of a plant, particularly

the meristematic tissues and the metabolically active cells. Nitrogen is one of

the major constituents of proteins, nucleic acids, vitamins and hormones.

Phosphorus: Phosphorus is absorbed by the plants from soil in the form

of phosphate ions (either as H PO2 4

−  or HPO4

2− ). Phosphorus is a

constituent of cell membranes, certain proteins, all nucleic acids and

nucleotides, and is required for all phosphorylation reactions.

Potassium: It is absorbed as potassium ion (K+). In plants, this is required

in more abundant quantities in the meristematic tissues, buds, leaves

and root tips. Potassium helps to maintain an anion-cation balance in

cells and is involved in protein synthesis, opening and closing of stomata,

activation of enzymes and in the maintenance of the turgidity of cells.

Calcium: Plant absorbs calcium from the soil in the form of calcium ions

(Ca2+). Calcium is required by meristematic and differentiating tissues.

During cell division it is used in the synthesis of cell wall, particularly as

calcium pectate in the middle lamella. It is also needed during the

formation of mitotic spindle. It accumulates in older leaves. It is involved

in the normal functioning of the cell membranes. It activates certain

enzymes and plays an important role in regulating metabolic activities.

Magnesium: It is absorbed by plants in the form of divalent Mg2+. It

activates the enzymes of respiration, photosynthesis and are involved in

the synthesis of DNA and RNA. Magnesium is a constituent of the ring

structure of chlorophyll and helps to maintain the ribosome structure.

Sulphur: Plants obtain sulphur in the form of sulphate ( )SO4

2− . Sulphur is

present in two amino acids – cysteine and methionine and is the main

constituent of several coenzymes, vitamins (thiamine, biotin, Coenzyme A)

and ferredoxin.

Iron: Plants obtain iron in the form of ferric ions (Fe3+). It is required in

larger amounts in comparison to other micronutrients. It is an important

constituent of proteins involved in the transfer of electrons like ferredoxin

and cytochromes. It is reversibly oxidised from Fe2+ to Fe3+ during electron

transfer. It activates catalase enzyme, and is essential for the formation of

chlorophyll.
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Manganese: It is absorbed in the form of manganous ions (Mn2+). It

activates many enzymes involved in photosynthesis, respiration and

nitrogen metabolism. The best defined function of manganese is in the

splitting of water to liberate oxygen during photosynthesis.

Zinc: Plants obtain zinc as Zn2+ ions. It activates various enzymes,

especially carboxylases. It is also needed in the synthesis of auxin.

Copper: It is absorbed as cupric ions (Cu2+). It is essential for the overall

metabolism in plants. Like iron, it is associated with certain enzymes

involved in redox reactions and is reversibly oxidised from Cu+ to Cu2+.

Boron : It is absorbed as BO3

3−  or B O4 7

2− . Boron is required for uptake

and utilisation of Ca2+, membrane functioning, pollen germination, cell

elongation, cell differentiation and carbohydrate translocation.

Molybdenum: Plants obtain it in the form of molybdate ions ( )MoO2
2+ . It

is a component of several enzymes, including nitrogenase and nitrate

reductase both of which participate in nitrogen metabolism.

Chlorine: It is absorbed in the form of chloride anion (Cl–). Along with

Na+ and K+, it helps in determining the solute concentration and the anion-

cation balance in cells. It is essential for the water-splitting reaction in

photosynthesis, a reaction that leads to oxygen evolution.

12.2.3 Deficiency Symptoms of Essential Elements

Whenever the supply of an essential element becomes limited, plant growth

is retarded. The concentration of the essential element below which plant

growth is retarded is termed as critical concentration. The element is

said to be deficient when present below the critical concentration.

Since each element has one or more specific structural or functional

role in plants, in the absence of any particular element, plants show certain

morphological changes. These morphological changes are indicative of

certain element deficiencies and are called deficiency symptoms. The

deficiency symptoms vary from element to element and they disappear

when the deficient mineral nutrient is provided to the plant. However, if

deprivation continues, it may eventually lead to the death of the plant. The

parts of the plants that show the deficiency symptoms also depend on the

mobility of the element in the plant. For elements that are actively mobilised

within the plants and exported to young developing tissues, the deficiency

symptoms tend to appear first in the older tissues. For example, the

deficiency symptoms of nitrogen, potassium and magnesium are visible

first in the senescent leaves. In the older leaves, biomolecules containing

these elements are broken down, making these elements available for

mobilising to younger leaves.

The deficiency symptoms tend to appear first in the young tissues

whenever the elements are relatively immobile and are not transported

out of the mature organs, for example, element like sulphur and
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calcium are a part of the structural component of the cell and hence are

not easily released. This aspect of mineral nutrition of plants is of a great

significance and importance to agriculture and horticulture.

The kind of deficiency symptoms shown in plants include chlorosis,

necrosis, stunted plant growth, premature fall of leaves and buds, and

inhibition of cell division. Chlorosis is the loss of chlorophyll leading to

yellowing in leaves. This symptom is caused by the deficiency of elements

N, K, Mg, S, Fe, Mn, Zn and Mo. Likewise, necrosis, or death of tissue,

particularly leaf tissue, is due to the deficiency of Ca, Mg, Cu, K. Lack or

low level of N, K, S, Mo causes an inhibition of cell division. Some elements

like N, S, Mo delay flowering if their concentration in plants is low.

You can see from the above that the deficiency of any element can

cause multiple symptoms and that the same symptoms may be caused

by the deficiency of one of several different elements. Hence, to identify

the deficient element, one has to study all the symptoms developed in all

the various parts of the plant and compare them with the available

standard tables. We must also be aware that different plants also respond

differently to the deficiency of the same element.

12.2.4 Toxicity of Micronutrients

The requirement of micronutrients is always in low amounts while their

moderate decrease causes the deficiency symptoms and a moderate increase

causes toxicity. In other words, there is a narrow range of concentration at

which the elements are optimum. Any mineral ion concentration in tissues

that reduces the dry weight of tissues by about 10 per cent is considered

toxic. Such critical concentrations vary widely among different

micronutrients. The toxicity symptoms are difficult to identify. Toxicity levels

for any element also vary for different plants. Many a times, excess of an

element may inhibit the uptake of another element. For example, the

prominent symptom of manganese toxicity is the appearance of brown

spots surrounded by chlorotic veins. It is important to know that

manganese competes with iron and magnesium for uptake and with

magnesium for binding with enzymes. Manganese also inhibit calcium

translocation in shoot apex. Therefore, excess of manganese may, in fact,

induce deficiencies of iron, magnesium and calcium. Thus, what appears

as symptoms of manganese toxicity may actually be the deficiency

symptoms of iron, magnesium and calcium. Can this knowledge be of some

importance to a farmer? a gardener? or even for you in your kitchen-garden?

12.3 MECHANISM OF ABSORPTION OF ELEMENTS

Much of the studies on mechanism of absorption of elements by plants

has been carried out in isolated cells, tissues or organs. These studies
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revealed that the process of absorption can be demarcated into two main

phases. In the first phase, an initial rapid uptake of ions into the ‘free

space’ or ‘outer space’ of cells – the apoplast, is passive. In the second

phase of uptake, the ions are taken in slowly into the ‘inner space’ –  the

symplast of the cells. The passive movement of ions into the apoplast

usually occurs through ion-channels, the trans-membrane proteins that

function as selective pores. On the other hand, the entry or exit of ions to

and from the symplast requires the expenditure of metabolic energy, which

is an active process. The movement of ions is usually called flux; the

inward movement into the cells is influx and the outward movement, efflux.

You have read the aspects of mineral nutrient uptake and translocation

in plants in Chapter 11.

12.4 TRANSLOCATION OF SOLUTES

Mineral salts are translocated through xylem along with the ascending

stream of water, which is pulled up through the plant by transpirational

pull. Analysis of xylem sap shows the presence of mineral salts in it. Use

of radioisotopes of mineral elements also substantiate the view that they

are transported through the xylem. You have already discussed the

movement of water in xylem in Chapter 11.

12.5 SOIL AS RESERVOIR OF ESSENTIAL ELEMENTS

Majority of the nutrients that are essential for the growth and

development of plants become available to the roots due to weathering

and breakdown of rocks. These processes enrich the soil with dissolved

ions and inorganic salts. Since they are derived from the rock minerals,

their role in plant nutrition is referred to as mineral nutrition. Soil

consists of a wide variety of substances. Soil not only supplies minerals

but also harbours nitrogen-fixing bacteria, other microbes, holds water,

supplies air to the roots and acts as a matrix that stabilises the plant.

Since deficiency of essential minerals affect the crop-yield, there is often

a need for supplying them through fertilisers. Both macro-nutrients

(N, P, K, S, etc.) and micro-nutrients (Cu, Zn, Fe, Mn, etc.) form

components of fertilisers and are applied as per need.

12.6 METABOLISM OF NITROGEN

12.6.1 Nitrogen Cycle

Apart from carbon, hydrogen and oxygen, nitrogen is the most

prevalent element in living organisms. Nitrogen is a constituent of

amino acids, proteins, hormones, chlorophylls and many of the

vitamins. Plants compete with microbes for the limited nitrogen that
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is available in soil. Thus, nitrogen is

a limiting nutrient for both natural

and agricultural eco-systems.

Nitrogen exists as two nitrogen atoms

joined by a very strong triple covalent

bond (N ≡ N).  The process of

conversion of  nitrogen (N
2
)  to

ammonia is termed as nitrogen-

fixation. In nature, lightning and

ultraviolet radiation provide enough

energy to convert nitrogen to nitrogen

oxides (NO, NO
2
, N

2
O). Industrial

combustions, forest fires, automobile

exhausts and power -generating

stations are also sources of

atmospheric nitrogen oxides.

Decomposition of organic nitrogen of

dead plants and animals into

ammonia is called ammonification.

Some of this ammonia volatilises and

re-enters the atmosphere but most of

it is converted into nitrate by soil

bacteria in the following steps:

Figure 12.3 The nitrogen cycle showing
relationship between the three
main nitrogen pools – atmospheric
soil, and biomass

2 3 2 2 23 2 2 2NH O NO H H O+  → + +
− + .... (i)

2 22 2 3NO O NO− −
+  → ...... (ii)

Ammonia is first oxidised to nitrite by the bacteria Nitrosomonas and/or

Nitrococcus. The nitrite is further oxidised to nitrate with the help of the

bacterium Nitrobacter. These steps are called nitrification (Figure 12.3).

These nitrifying bacteria are chemoautotrophs.

The nitrate thus formed is absorbed by plants and is transported to

the leaves. In leaves, it is reduced to form ammonia that finally forms the

amine group of amino acids. Nitrate present in the soil is also reduced to

nitrogen by the process of denitrification. Denitrification is carried by

bacteria Pseudomonas and Thiobacillus.

12.6.2 Biological Nitrogen Fixation

Very few living organisms can utilise the nitrogen in the form N
2
,
 
available

abundantly in the air. Only certain prokaryotic species are capable of

fixing nitrogen. Reduction of nitrogen to ammonia by living organisms is
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called biological nitrogen fixation. The enzyme, nitrogenase which is

capable of nitrogen reduction is present exclusively in prokaryotes. Such

microbes are called N
2
- fixers.

N N NH
Nitrogenase

≡  → 3

The nitrogen-fixing microbes could be free-living or symbiotic. Examples

of free-living nitrogen-fixing aerobic microbes are Azotobacter and

Beijernickia while Rhodospirillum is anaerobic and Bacillus free-living.

In addition, a number of cyanobacteria such as Anabaena and Nostoc

are also free-living nitrogen-fixers.

Symbiotic biological nitrogen fixation

Several types of symbiotic biological nitrogen fixing associations are known.

The most prominent among them is the legume-bacteria relationship.

Species of rod-shaped Rhizobium has such relationship with the roots of

several legumes such as alfalfa, sweet clover, sweet pea, lentils, garden pea,

broad bean, clover beans, etc.  The most common association on roots is

as nodules. These nodules are small outgrowths on the roots. The microbe,

Frankia, also produces nitrogen-fixing nodules on the roots of non-

leguminous plants (e.g., Alnus). Both Rhizobium and Frankia are free-

living in soil, but as symbionts, can fix atmospheric nitrogen.

Uproot any one plant of a common pulse, just before flowering. You

will see near-spherical outgrowths on the roots. These are nodules. If

you cut through them you will notice that the central portion is red or

pink. What makes the nodules pink? This is due to the presence of

leguminous haemoglobin or leg-haemoglobin.

Nodule Formation

Nodule formation involves a sequence of multiple interactions between

Rhizobium and roots of the host plant. Principal stages in the nodule

formation are summarised as follows:

Rhizobia multiply and colonise the surroundings of roots and get attached

to epidermal and root hair cells. The root-hairs curl and the bacteria invade

the root-hair. An infection thread is produced carrying the bacteria into

the cortex of the root, where they initiate the nodule formation in the cortex

of the root. Then the bacteria are released from the thread into the cells

which leads to the differentiation of specialised nitrogen fixing cells. The

nodule thus formed, establishes a direct vascular connection with the host

for exchange of nutrients. These events are depicted in Figure 12.4.

The nodule contains all the necessary biochemical components, such

as the enzyme nitrogenase and leghaemoglobin. The enzyme nitrogenase

is a Mo-Fe protein and catalyses the conversion of atmospheric nitrogen

to ammonia, (Figure 12.5) the first stable product of nitrogen fixation.
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The reaction is as follows:

–
2 3 2 iN 8e 8H 16ATP 2NH H 16ADP 16P+

+ + + → + + +

The enzyme nitrogenase is highly sensitive to the molecular oxygen; it

requires anaerobic conditions. The nodules have adaptations that ensure

that the enzyme is protected from oxygen. To protect these enzymes, the

nodule contains an oxygen scavenger called leg-haemoglobin. It is interesting

to note that these microbes live as aerobes under free-living conditions (where

nitrogenase is not operational), but during nitrogen-fixing events, they become

anaerobic (thus protecting the nitrogenase enzyme). You must have noticed

in the above reaction that the ammonia synthesis by nitrogenease requires a

Soil
particles

Root hair

Bacteria

Inner cortex and
pericycle cells
under division

Infection
thread

containing
bacteria

Mature nodule

Hook

Bacteria

Figure 12.4 Development of root nodules in soyabean : (a) Rhizobium bacteria
contact a susceptible root hair, divide near it, (b) Successful infection
of the root hair causes it to curl, (c) Infected thread carries the bacteria
to the inner cortex. The bacteria get modified into rod-shaped
bacteroids and cause inner cortical and pericycle cells to divide.
Division and growth of cortical and pericycle cells lead to nodule
formation, (d) A mature nodule is complete with vascular tissues
continuous with those of the root
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Figure 12.5 Steps of conversion of atmospheric nitrogen to ammonia by nitrogenase
enzyme complex found in nitrogen-fixing bacteria
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very high input of energy (8 ATP for each NH
3 
produced). The energy required,

thus, is obtained from the  respiration of the host cells.

Fate of ammonia: At physiological pH, the ammonia is protonated to form

NH4

+  (ammonium) ion. While most of the plants can assimilate nitrate as well

as ammonium ions, the latter is quite toxic to plants and hence cannot

accumulate in them. Let us now see how the NH4

+  is used to synthesise

amino acids in plants. There are two main ways in which this can take place:

(i) Reductive amination : In these processes, ammonia reacts with

α-ketoglutaric acid and forms glutamic acid as indicated in the

equation given below :

(ii) Transamination : It involves the transfer of amino group from one

amino acid to the keto group of a keto acid. Glutamic acid is the main

amino acid from which the transfer of NH
2
, the amino group takes

place and other amino acids are formed through transamination. The

enzyme transaminase catalyses all such reactions. For example,

α − + +  →
+ketoglutaric acid NH NADPH Glutamate

Dehydrogenase4  + +glutamate H O NADP2

The two most important amides – asparagine and glutamine – found in

plants are a structural part of proteins. They are formed from two amino

acids, namely aspartic acid and glutamic acid, respectively, by addition

of another amino group to each. The hydroxyl part of the acid is replaced

by another NH
2
– radicle. Since amides contain more nitrogen than the

amino acids, they are transported to other parts of the plant via xylem

vessels. In addition, along  with the transpiration stream the nodules of

some plants (e.g., soyabean) export the fixed nitrogen as ureides. These

compounds also have a particularly high nitrogen to carbon ratio.

SUMMARY

Plants obtain their inorganic nutrients from air, water and soil. Plants absorb a

wide variety of mineral elements. Not all the mineral elements that they absorb are

required by plants. Out of the more than 105 elements discovered so far, less than

21 are essential and beneficial for normal plant growth and development. The

elements required in large quantities are called macronutrients while those required

in less quantities or in trace are termed as micronutrients. These elements are

either essential constituents of proteins, carbohydrates, fats, nucleic acid etc.,
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and/or take part in various metabolic processes. Deficiency of each of these

essential elements may lead to symptoms called deficiency symptoms. Chlorosis,

necrosis, stunted growth, impaired cell division, etc., are some prominent deficiency

symptoms. Plants absorb minerals through roots by either passive or active

processes. They are carried to all parts of the organism through xylem along with

water transport.

Nitrogen is very essential for the sustenance of life. Plants cannot use

atmospheric nitrogen directly. But some of the plants in association with N
2
-fixing

bacteria, especially roots of legumes, can fix this atmospheric nitrogen into

biologically usable forms. Nitrogen fixation requires a strong reducing agent and

energy in the form of ATP. N
2
 -fixation is accomplished with the help of nitrogen-

fixing microbes, mainly Rhizobium. The enzyme nitrogenase which plays an

important role in biological N
2
  fixation is very sensitive to oxygen. Most of the

processes take place in anaerobic environment. The energy, ATP, required is

provided by the respiration of the host cells. Ammonia produced following N
2
  fixation

is incorporated into amino acids as the amino group.

EXERCISES

1. ‘All elements that are present in a plant need not be essential to its survival’.

Comment.

2. Why is purification of water and nutrient salts so important in studies involving

mineral nutrition using hydroponics?

3. Explain with examples: macronutrients, micronutrients, beneficial nutrients,

toxic elements and essential elements.

4. Name at least five different deficiency symptoms in plants. Describe them and

correlate them with the concerned mineral deficiency.

5. If a plant shows a symptom which could develop due to deficiency of more than

one nutrient, how would you find out experimentally, the real deficient mineral

element?

6. Why is that in certain plants deficiency symptoms appear first in younger parts

of the plant while in others they do so in mature organs?

7. How are the minerals absorbed by the plants?

8. What are the conditions necessary for fixation of atmospheric nitrogen by

Rhizobium. What is their role in N
2
 -fixation?

9. What are the steps involved in formation of a root nodule?

10. Which of the following statements are true? If false, correct them:

(a) Boron deficiency leads to stout axis.

(b) Every mineral element that is present in a cell is needed by the cell.

(c) Nitrogen as a nutrient element, is highly immobile in the plants.

(d) It is very easy to establish the essentiality of micronutrients because they

are required only in trace quantities.
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All animals including human beings depend on plants for their food. Have

you ever wondered from where plants get their food?  Green plants, in fact,

have to make or rather synthesise the food they need and all other organisms

depend on them for their needs. The green plants make or rather synthesise

the food they need through photosynthesis and are therefore called autotrophs.

You have already learnt that the autotrophic nutrition is found only in plants

and all other organisms that depend on the green plants for food are

heterotrophs. Green plants carry out ‘photosynthesis’, a physico-chemical

process by which they use light energy to drive the synthesis of organic

compounds.  Ultimately, all living forms on earth depend on sunlight for

energy.  The use of energy from sunlight by plants doing photosynthesis is

the basis of life on earth.  Photosynthesis is important due to two reasons: it

is the primary source of all food on earth. It is also responsible for the release

of oxygen into the atmosphere by green plants. Have you ever thought what

would happen if there were no oxygen to breath? This chapter focusses on

the structure of the photosynthetic machinery and the various reactions

that transform light energy into chemical energy.

13.1 WHAT DO WE KNOW?

Let us try to find out what we already know about photosynthesis.  Some

simple experiments you may have done in the earlier classes have shown

that chlorophyll (green pigment of the leaf), light and CO
2
 are required for

photosynthesis to occur.

You may have carried out the experiment to look for starch formation

in two leaves – a variegated leaf or a leaf that was partially covered with

black paper, and exposed to light.  On testing these leaves for the presence

of starch it was clear that photosynthesis occurred only in the green parts

of the leaves in the presence of light.
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Another experiment you may have carried out

where a part of a leaf is enclosed in a test tube

containing some KOH soaked cotton (which

absorbs CO
2
), while the other half is exposed to air.

The setup is then placed in light for some time. On

testing for the presence of starch later in the two

plants of the leaf, you must have found that the

exposed part of the leaf tested positive for starch

while the portion that was in the tube, tested

negative. This showed that CO
2
 was required for

photosynthesis. Can you explain how this

conclusion could be drawn?

13.2 EARLY EXPERIMENTS

It is interesting to learn about those simple

experiments that led to a gradual development in

our understanding of photosynthesis.

Joseph Priestley (1733-1804) in 1770

performed a series of experiments that revealed the

essential role of air in the growth of green plants.

Priestley, you may recall, discovered oxygen in

1774. Priestley observed that a candle burning in

a closed space – a bell jar, soon gets extinguished

(Figure 13.1 a, b, c, d).  Similarly, a mouse would

soon suffocate in a closed space. He concluded that

a burning candle or an animal that breathe the air,

both somehow, damage the air.  But when he placed a mint plant in the

same bell jar, he found that the mouse stayed alive and the candle

continued to burn.  Priestley hypothesised as follows: Plants restore to

the air whatever breathing animals and burning candles remove.

Can you imagine how Priestley would have conducted the experiment

using a candle and a plant?  Remember, he would need to rekindle the

candle to test whether it burns after a few days. How many different

ways can you think of to light the candle without disturbing the set-up?

Using a similar setup as the one used by Priestley, but by placing it

once in the dark and once in the sunlight, Jan Ingenhousz (1730-1799)

showed that sunlight is essential to the plant process that somehow

purifies the air fouled by burning candles or breathing animals.

Ingenhousz in an elegant experiment with an aquatic plant showed that

in bright sunlight, small bubbles were formed around the green parts

while in the dark they did not.  Later he identified these bubbles to be of

oxygen.  Hence he showed that it is only the green part of the plants that

could release oxygen.

(a)

(c)

(b)

(d)

Figure 13.1 Priestley’s experiment
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It was not until about 1854 that Julius von Sachs provided evidence

for production of glucose when plants grow. Glucose is usually stored as

starch. His later studies showed that the green substance in plants

(chlorophyll as we know it now) is located in special bodies (later called

chloroplasts) within plant cells. He found that the green parts in plants is

where glucose is made, and that the glucose is usually stored as starch.

Now consider the interesting experiments done by T.W Engelmann

(1843 – 1909).  Using a prism he split light into its spectral components

and then illuminated a green alga, Cladophora, placed in a suspension

of aerobic bacteria. The bacteria were used to detect the sites of O
2

evolution. He observed that the bacteria accumulated mainly in the region

of blue and red light of the split spectrum. A first action spectrum of

photosynthesis was thus described. It resembles roughly the absorption

spectra of chlorophyll a and b (discussed  in section 13.4).

By the middle of the nineteenth century the key features of plant

photosynthesis were known, namely, that plants could use light energy

to make carbohydrates from CO
2
 and water.  The empirical equation

representing the total process of photosynthesis for oxygen evolving

organisms was then understood as:

CO H O CH O O
Light

2 2 2 2+  → +[ ]

where [CH
2
O] represented a carbohydrate (e.g., glucose, a six-carbon

sugar).

A milestone contribution to the understanding of photosynthesis was

that made by a microbiologist, Cornelius van Niel (1897-1985), who,

based on his studies of purple and green bacteria, demonstrated that

photosynthesis is essentially a light-dependent reaction in which

hydrogen from a suitable oxidisable compound reduces carbon dioxide

to carbohydrates. This can be expressed by:

2 22 2 2 2H A CO A CH O H O
Light

+  → + +

In green plants H
2
O is the hydrogen donor and is oxidised to O

2
. Some

organisms do not release O
2 
during photosynthesis.  When H

2
S, instead

is the hydrogen donor for purple and green sulphur bacteria, the

‘oxidation’ product is sulphur or sulphate depending on the organism

and not O
2
. Hence, he inferred that the O

2 
evolved by the green plant

comes from H
2
O, not from carbon dioxide. This was later proved by using

radioisotopic techniques.  The correct equation, that would represent  the

overall process of photosynthesis is therefore:

6 12 6 62 2 6 12 6 2 2CO H O C H O H O O
Light

+  → + +

where C
6
 H

12
 O

6
 represents glucose. The O

2
 released is from water; this

was proved using radio isotope techniques. Note that this is not a single
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reaction but description of a multistep process called photosynthesis.

Can you explain why twelve molecules of water as substrate are used

in the equation given above?

13.3 WHERE DOES PHOTOSYNTHESIS TAKE PLACE?

You would of course answer: in ‘the green leaf’ or ‘in the chloroplasts’,

based on what you earlier read in Chapter 8. You are definitely right.

Photosynthesis does take place in the green leaves of plants but it does so

also in other green parts of the plants. Can you name some other parts

where you think photosynthesis may occur?

You would recollect from previous unit that the mesophyll cells in the

leaves, have a large number of chloroplasts. Usually the chloroplasts align

themselves along the walls of the mesophyll cells, such that they get the

optimum quantity of the incident light. When do you think the

chloroplasts will be aligned with their flat surfaces parallel to the walls?

When would they be perpendicular to the incident light?

You have studied the structure of chloroplast in Chapter 8. Within

the chloroplast there is membranous system consisting of grana, the

stroma lamellae, and the matrix stroma (Figure 13.2). There is a clear

division of labour within the chloroplast. The membrane system is

responsible for trapping the light energy and also for the synthesis of ATP

and NADPH. In stroma, enzymatic reactions synthesise sugar, which in

turn forms starch. The former set of reactions, since they are directly light

driven are called light reactions (photochemical reactions). The latter

are not directly light driven but are dependent on the products of light

reactions (ATP and NADPH). Hence, to distinguish the latter they are called,

by convention, as dark reactions (carbon reactions). However, this should

not be construed to mean that they occur in darkness or that they are not

light-dependent.

Figure 13.2 Diagrammatic representation of an electron micrograph of a section of
chloroplast

Outer membrane

Inner membrane

Stromal lamella

Grana

Stroma

Ribosomes

Starch granule

Lipid droplet
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13.4 HOW MANY TYPES OF PIGMENTS ARE

INVOLVED IN PHOTOSYNTHESIS?

Looking at plants have you ever wondered why

and how there are so many shades of green in

their leaves – even in the same plant? We can

look for an answer to this question by trying to

separate the leaf pigments of any green  plant

through paper chromatography. A

chromatographic separation of the leaf pigments

shows that the colour that we see in leaves is

not due to a single pigment but due to four

pigments: Chlorophyll a (bright or blue green

in the chromatogram), chlorophyll b (yellow

green), xanthophylls (yellow) and carotenoids

(yellow to yellow-orange).  Let us now see what

roles various pigments play in photosynthesis.

Pigments are substances that have an ability

to absorb light, at specific wavelengths. Can you

guess which is the most abundant plant

pigment in the world? Let us study the graph

showing the ability of chlorophyll a pigment to

absorb lights of different wavelengths (Figure

13.3 a). Of course, you are familiar with the

wavelength of the visible spectrum of light as

well as the VIBGYOR.

From Figure 13.3a can you determine the

wavelength (colour of light) at which chlorophyll

a shows the maximum absorption? Does it

show another absorption peak at any other

wavelengths too? If yes, which one?

Now look at Figure 13.3b showing the

wavelengths at which maximum photosynthesis

occurs in a plant. Can you see that the

wavelengths at which there is maximum

absorption by chlorophyll a, i.e., in the blue and

the red regions, also shows higher rate of

photosynthesis. Hence, we can conclude that

chlorophyll a is the chief pigment associated

with photosynthesis. But by looking at Figure

13.3c  can you say that there is a complete

one-to-one overlap between the absorption

spectrum of chlorophyll a and the action

spectrum of photosynthesis?

Figure 13.3a Graph showing the absorption
spectrum of chlorophyll a, b and
the carotenoids

Figure 13.3b Graph showing action
spectrum of photosynthesis

Figure 13.3c Graph showing action
spectrum of photosynthesis
superimposed on absorption
spectrum of chlorophyll a

2018-19



PHOTOSYNTHESIS IN HIGHER PLANTS 211

These graphs, together, show that most of the photosynthesis takes

place in the blue and red regions of the spectrum; some photosynthesis

does take place at the other wavelengths of the visible spectrum.  Let us

see how this happens. Though chlorophyll is the major pigment

responsible for trapping light, other thylakoid pigments like chlorophyll

b, xanthophylls and carotenoids, which are called accessory pigments,

also absorb light and transfer the energy to chlorophyll a. Indeed, they

not only enable a wider range of wavelength of incoming light to be utilised

for photosyntesis but also protect chlorophyll a from photo-oxidation.

13.5 WHAT IS LIGHT REACTION?

Light reactions or the ‘Photochemical’ phase

include light absorption, water splitting, oxygen

release, and the formation of high-energy

chemical intermediates, ATP and NADPH.

Several protein complexes are involved in the

process. The pigments are organised into two

discrete photochemical light harvesting

complexes (LHC) within the Photosystem I (PS

I) and Photosystem II (PS II).  These are named

in the sequence of their discovery, and not in

the sequence in which they function during the

light reaction. The LHC are  made up of

hundreds of pigment molecules bound to

proteins. Each photosystem has all the pigments

(except one molecule of chlorophyll a) forming

a light harvesting system also called antennae

(Figure 13.4). These pigments help to make

photosynthesis more efficient by absorbing

different wavelengths of light. The single chlorophyll a molecule forms

the reaction centre. The reaction centre is different in both the

photosystems.  In PS I the reaction centre chlorophyll a has an absorption

peak at 700 nm, hence is called P700, while in PS II it has absorption

maxima at 680 nm, and is called P680.

13.6 THE ELECTRON TRANSPORT

In photosystem II the reaction centre chlorophyll a absorbs 680 nm

wavelength of red light causing electrons to become excited and jump

into an orbit farther from the atomic nucleus. These electrons are picked

up by an electron acceptor which passes them to an electrons transport

Photon Reaction
centre

Pigment
molecules

Primary acceptor

Figure 13.4 The light harvesting complex
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system consisting of cytochromes (Figure

13.5). This movement of electrons is downhill,

in terms of an oxidation-reduction or redox

potential scale. The electrons are not used up

as they pass through the electron transport

chain, but are passed on to the pigments of

photosystem PS I. Simultaneously, electrons

in the reaction centre of PS I are also excited

when they receive red light of wavelength 700

nm and are transferred to another accepter

molecule that has a greater redox potential.

These electrons then are moved downhill

again,  this time to a molecule of energy-rich

NADP+. The addition of these electrons reduces

NADP+ to NADPH + H+.  This whole scheme of

transfer of electrons, starting from the PS II,

uphill to the acceptor, down the electron

transport chain to PS I, excitation of electrons,

transfer to another acceptor, and finally down hill to NADP+ reducing it to

NADPH + H+ is called the Z scheme, due to its characterstic shape (Figure

13.5).  This shape is formed when all the carriers are placed in a sequence

on a redox potential scale.

13.6.1 Splitting of Water

You would then ask, How does PS II supply electrons continuously? The

electrons that were moved from photosystem II must be replaced. This is

achieved by electrons available due to splitting of water. The splitting of

water is associated with the PS II; water is split into 2H+, [O] and electrons.

This creates oxygen, one of the net products of photosynthesis. The

electrons needed to replace those removed from photosystem I are provided

by photosystem II.

2 4 42 2H O H O e → + +

+ −

We need to emphasise here that the water splitting complex is associated

with the PS II, which itself is physically located on the inner side of the

membrane of the thylakoid. Then, where are the protons and O
2 
formed

likely to be released – in the lumen? or on the outer side of the membrane?

13.6.2 Cyclic and Non-cyclic Photo-phosphorylation

Living organisms have the capability of extracting energy from oxidisable

substances and store this in the form of bond energy. Special substances like

ATP, carry this energy in their chemical bonds. The process through which

Electron
transport
system

-
-

e acceptor
e acceptor

Light

Photosystem II Photosystem I

NADPH

NADP+

LHC

LHC

H O        2e + 2H  + [O]2 - +

ADP+iP ATP

Figure 13.5 Z scheme of light reaction
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ATP is synthesised by cells (in mitochondria and

chloroplasts) is named phosphorylation. Photo-

phosphorylation is the synthesis of ATP from

ADP and inorganic phosphate in the presence of

light. When the two photosystems work in a

series, first PS II and then the PS I, a process called

non-cyclic photo-phosphorylation occurs. The

two photosystems are connected through an

electron transport chain, as seen earlier – in the

Z scheme. Both ATP and NADPH + H+  are

synthesised by this kind of electron flow (Figure

13.5).

When only PS I is functional, the electron is

circulated within the photosystem and the

phosphorylation occurs due to cyclic flow of

electrons (Figure 13.6). A possible location

where this could be happening is in the stroma

lamellae.  While the membrane or lamellae of the grana have both PS I

and PS II the stroma lamellae membranes lack PS II as well as NADP

reductase enzyme. The excited electron does not pass on to NADP+ but is

cycled back to the PS I complex through the electron transport chain

(Figure 13.6).  The cyclic flow hence, results only in the synthesis of ATP,

but not of NADPH + H+. Cyclic photophosphorylation also occurs when

only light of wavelengths beyond 680 nm are available for excitation.

13.6.3 Chemiosmotic Hypothesis

Let us now try and understand how actually ATP is synthesised in the

chloroplast. The chemiosmotic hypothesis has been put forward to explain

the mechanism. Like in respiration, in photosynthesis too, ATP synthesis is

linked to development of a proton gradient across a membrane. This time

these are the membranes of thylakoid. There is one difference though, here

the proton accumulation is towards the inside of the membrane, i.e., in the

lumen. In respiration, protons accumulate in the intermembrane space of

the mitochondria when electrons move through the ETS (Chapter 14).

Let us understand what causes the proton gradient across the

membrane. We need to consider again the processes that take place during

the activation of electrons and their transport to determine the steps that

cause a proton gradient to develop (Figure 13.7).

(a) Since splitting of the water molecule takes place on the inner side of

the membrane, the protons or hydrogen ions that are produced by

the splitting of water accumulate within the lumen of the thylakoids.

Figure 13.6 Cyclic photophosphorylation

Photosystem I

Light

e- acceptor

Electron
transport
system

Chlorophyll
P 700

A
D

P
+
iP

A
T
P
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(b) As electrons move through the photosystems, protons are transported

across the membrane.  This happens because the primary accepter of

electron which is located towards the outer side of the membrane

transfers its electron not to an electron carrier but to an H carrier.

Hence, this molecule removes a proton from the stroma while

transporting an electron.  When this molecule passes on its electron

to the electron carrier on the inner side of the membrane, the proton

is released into the inner side or the lumen side of the membrane.

(c) The NADP reductase enzyme is located on the stroma side of the

membrane.  Along with electrons that come from the acceptor of

electrons of PS I, protons are necessary for the reduction of NADP+ to

NADPH+ H+.  These protons are also removed from the stroma.

Hence, within the chloroplast, protons in the stroma decrease in

number, while in the lumen there is accumulation of protons.  This creates

a proton gradient across the thylakoid membrane as well as a measurable

decrease in pH in the lumen.

Why are we so interested in the proton gradient?  This gradient is
important because it is the breakdown of this gradient that leads to the
synthesis of ATP.  The gradient is broken down due to the movement of
protons across the membrane to the stroma through the transmembrane

Figure 13.7 ATP synthesis through chemiosmosis
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channel of the CF
0
 of the ATP synthase. The ATP synthase enzyme consists

of two parts: one called the CF
0
 is embedded in the thylakoid membrane

and forms a transmembrane channel that carries out facilitated diffusion

of protons across the membrane. The other portion is called CF
1
 and

protrudes on the outer surface of the thylakoid membrane on the side

that faces the stroma. The break down of the gradient provides enough

energy to cause a conformational change in the CF
1
 particle of the ATP

synthase, which makes the enzyme synthesise several molecules of energy-

packed ATP.

Chemiosmosis requires a membrane, a proton pump, a proton

gradient and ATP synthase. Energy is used to pump protons across a

membrane, to create a gradient or a high concentration of protons within

the thylakoid lumen. ATP synthase has a channel that allows diffusion of

protons back across the membrane; this releases enough energy to activate

ATP synthase enzyme that catalyses the formation of ATP.

Along with the NADPH produced by the movement of electrons, the

ATP will be used immediately in the biosynthetic  reaction taking place in

the stroma, responsible for fixing CO
2
, and synthesis of sugars.

13.7 WHERE ARE THE ATP AND NADPH USED?

We learnt that the products of light reaction are ATP, NADPH and O
2
. Of

these O
2
 diffuses out of the chloroplast while ATP and NADPH are used to

drive the processes leading to the synthesis of food, more accurately, sugars.

This is the biosynthetic phase of photosynthesis. This process does not

directly depend on the presence of light but is dependent on the products

of the light reaction, i.e., ATP and NADPH, besides CO
2 
and H

2
O. You may

wonder how this could be verified; it is simple: immediately after light

becomes unavailable, the biosynthetic process continues for some time,

and then stops. If then, light is made available, the synthesis starts again.

Can we, hence, say that calling the biosynthetic phase as the dark

reaction is a misnomer? Discuss this amongst yourselves.

Let us now see how the ATP and NADPH are used in the biosynthetic

phase. We saw earlier that CO
2
 is combined with H

2
O to produce (CH

2
O)

n

or sugars. It was of interest to scientists to find out how this reaction

proceeded, or rather what was the first product formed when CO
2
 is taken

into a reaction or fixed. Just after world war II, among the several efforts

to put radioisotopes to beneficial use, the work of Melvin Calvin is

exemplary. The use of radioactive 14C by him in algal photosynthesis

studies led to the discovery that the first CO
2
 fixation product was a

3-carbon organic acid. He also contributed to working out the complete

biosynthetic pathway; hence it was called Calvin cycle after him. The

first product identified was 3-phosphoglyceric acid or in short PGA.

How many carbon atoms does it have?
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Scientists also tried to know whether all plants have PGA as the first

product of CO
2
 fixation, or whether any other product was formed in

other plants. Experiments conducted over a wide range of plants led to

the discovery of another group of plants, where the first stable product of

CO
2
 fixation was again an organic acid, but one which had 4 carbon

atoms in it. This acid was identified to be oxaloacetic acid or OAA.  Since

then CO
2
 assimilation during photosynthesis  was said to be of two main

types: those plants in which the first product of CO
2
 fixation is a C

3
 acid

(PGA), i.e., the C
3
 pathway, and those in which the first product was a C

4

acid (OAA), i.e., the C
4
 pathway.  These two groups of plants showed

other associated characteristics that we will discuss later.

13.7.1 The Primary Acceptor of CO
2

Let us now ask ourselves a question that was asked by the scientists who

were struggling to understand the ‘dark reaction’. How many carbon atoms

would a molecule have which after accepting (fixing) CO
2
, would have 3

carbons (of PGA)?

The studies very unexpectedly showed that the acceptor molecule

was a 5-carbon ketose sugar – ribulose bisphosphate (RuBP).  Did any

of you think of this possibility?  Do not worry; the scientists also took

a long time and conducted many experiments to reach this conclusion.

They also believed that since the first product was a C
3
 acid, the primary

acceptor would be a 2-carbon compound; they spent many years trying

to identify a 2-carbon compound before they discovered the 5-carbon

RuBP.

13.7.2 The Calvin Cycle

Calvin and his co-workers then worked out the whole pathway and showed

that the pathway operated in a cyclic manner; the RuBP was regenerated.

Let us now see how the Calvin pathway operates and where the sugar is

synthesised.  Let us at the outset understand very clearly that the Calvin

pathway occurs in all photosynthetic plants; it does not matter whether

they have C
3
 or C

4
 (or any other) pathways (Figure 13.8).

For ease of understanding, the Calvin cycle can be described under

three stages: carboxylation, reduction and regeneration.

1. Carboxylation – Carboxylation is the fixation of CO
2
 into a stable organic

intermediate.  Carboxylation is the most crucial step of the Calvin cycle

where CO
2
 is utilised for the carboxylation of RuBP.  This reaction is

catalysed by the enzyme RuBP carboxylase which results in the formation

of two molecules of 3-PGA.  Since this enzyme also has an oxygenation

activity it would be more correct to call it RuBP carboxylase-oxygenase

or RuBisCO.
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2. Reduction – These are a series of reactions that lead to the formation

of glucose.  The steps involve utilisation of 2 molecules of ATP for

phosphorylation and two of NADPH for reduction per CO
2
 molecule

fixed.  The fixation of six molecules of CO
2
 and 6 turns of the cycle are

required for the formation of one molecule of glucose from the pathway.

3. Regeneration – Regeneration of the CO
2
 acceptor molecule RuBP is

crucial if the cycle is to continue uninterrupted.  The regeneration

steps require one ATP for phosphorylation to form RuBP.

Ribulose-1,5-
bisphosphate

Atmosphere

C0
2
 + H

2
O

Carboxylation

ADP

Regeneration
3-phosphoglycerate

Triose
phosphate

Reduction
ATP

+
NADPH

ADP
+

P
i
 +NADP+

Sucrose, starch

ATP

Figure 13.8 The Calvin cycle proceeds in three stages : (1) carboxylation, during which
CO

2
 combines with ribulose-1,5-bisphosphate; (2) reduction, during which

carbohydrate is formed at the expense of the photochemically made ATP
and NADPH; and (3) regeneration during which the CO

2
 acceptor ribulose-

1,5-bisphosphate is formed again so that the cycle continues
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Hence for every CO
2
  molecule entering the Calvin cycle, 3 molecules

of ATP and 2 of NADPH are required.  It is probably to meet this difference

in number of ATP and NADPH used in the dark reaction that the cyclic

phosphorylation takes place.

To make one molecule of glucose 6 turns of the cycle are required.

Work out how many ATP and NADPH molecules will be required to make

one molecule of glucose through the Calvin pathway.

It might help you to understand all of this if we look at what goes in

and what comes out of the Calvin cycle.

In Out

Six CO
2

One glucose

18 ATP 18 ADP

12 NADPH 12 NADP

13.8 THE C
4
 PATHWAY

Plants that are adapted to dry tropical regions have the C
4
 pathway

mentioned earlier. Though these plants have the C
4
 oxaloacetic acid as

the first CO
2
 fixation product they use the C

3
 pathway or the Calvin cycle

as the main biosynthetic pathway. Then, in what way are they different

from C
3
 plants? This is a question that you may reasonably ask.

C
4
 plants are special: They have a special type of leaf anatomy, they

tolerate higher temperatures, they show a response to high light intensities,

they lack a process called photorespiration and have greater productivity

of biomass. Let us understand these one by one.

Study vertical sections of leaves, one of a C
3
 plant and the other of a C

4

plant. Do you notice the differences? Do both have the same types of

mesophylls?  Do they have similar cells around the vascular bundle sheath?

The particularly large cells around the vascular bundles of the C
4

plants are called bundle sheath cells, and the leaves which have such

anatomy are said to have ‘Kranz’ anatomy. ‘Kranz’ means ‘wreath’ and

is a reflection of the arrangement of cells.  The bundle sheath cells may

form several layers around the vascular bundles; they are characterised

by having a large number of chloroplasts, thick walls impervious to

gaseous exchange and no intercellular spaces. You may like to cut a

section of the leaves of C
4
 plants – maize or sorghum – to observe the

Kranz anatomy and the distribution of mesophyll cells.

It would be interesting for you to collect leaves of diverse species of

plants around you and cut vertical sections of the leaves. Observe under

the microscope – look for the bundle sheath around the vascular

bundles.  The presence of the bundle sheath would help you identify

the C
4
 plants.
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Now study the pathway shown in Figure 13.9. This pathway that has

been named the Hatch and Slack Pathway, is again a cyclic process.  Let

us study the pathway by listing the steps.

The primary CO
2
 acceptor is a 3-carbon molecule phosphoenol

pyruvate (PEP) and is present in the mesophyll cells. The enzyme

responsible for this fixation is PEP carboxylase or PEPcase. It is important

to register that the mesophyll cells lack RuBisCO enzyme. The C
4
 acid

OAA is formed in the mesophyll cells.

It then forms other 4-carbon compounds like malic acid or aspartic

acid in the mesophyll cells itself, which are transported to the bundle

sheath cells.  In the bundle sheath cells these C
4
 acids are broken down

to release CO
2
 and a 3-carbon molecule.

The 3-carbon molecule is transported back to the mesophyll where it

is converted to PEP again, thus, completing the cycle.

The CO
2
 released in the bundle sheath cells enters the C

3
 or the Calvin

pathway, a pathway common to all plants. The bundle sheath cells are

Figure 13.9 Diagrammatic representation of the Hatch and Slack Pathway
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rich in an enzyme Ribulose bisphosphate carboxylase-oxygenase

(RuBisCO), but lack PEPcase.  Thus, the basic pathway that results in

the formation of the sugars, the Calvin pathway, is common to the C
3
 and

C
4
 plants.

Did you note that the Calvin pathway occurs in all the mesophyll

cells of the C
3
 plants? In the C

4
 plants it does not take place in the

mesophyll cells but does so only in the bundle sheath cells.

13.9 PHOTORESPIRATION

Let us try and understand one more process that creates an important

difference between C
3
 and C

4
 plants – Photorespiration. To understand

photorespiration we have to know a little bit more about the first step of

the Calvin pathway – the first CO
2
 fixation step. This is the  reaction

where RuBP combines with CO
2
 to form 2 molecules of 3PGA, that is

catalysed by RuBisCO.

RuBP CO PGARuBisCo
+  → ×2 2 3

RuBisCO that is the most abundant enzyme in the world (Do you

wonder why?) is characterised by the fact that its active site can bind to

both CO
2
 and O

2
 – hence the name. Can you think how this could be

possible? RuBisCO has a much greater affinity for CO
2
 when the CO

2
: O

2

is nearly equal than for O
2
. Imagine what would happen if this were not

so! This binding is competitive. It is the relative concentration of O
2
 and

CO
2
 that determines which of the two will bind to the enzyme.

In C
3
 plants some O

2
 does bind to RuBisCO, and hence CO

2
 fixation is

decreased. Here the RuBP instead of being converted to  2 molecules of

PGA binds with O
2
 to form one molecule of phosphoglycerate and

phosphoglycolate (2 Carbon) in a pathway called photorespiration. In

the photorespiratory pathway, there is neither synthesis of sugars, nor of

ATP. Rather it results in the release of CO
2
 with the utilisation of ATP. In

the photorespiratory pathway there is no synthesis of ATP or NADPH.

The biological function of photorespiration is not known yet.

In C
4
 plants photorespiration does not occur. This is because they

have a mechanism that increases the concentration of CO
2
 at the enzyme

site.  This takes place when the C
4
 acid from the mesophyll is broken

down in the bundle sheath cells to release CO
2
 – this results in increasing

the intracellular concentration of CO
2
. In turn, this ensures that the

RuBisCO functions as a carboxylase minimising the oxygenase activity.

Now that you know that the C
4
 plants lack photorespiration, you

probably can understand why productivity and yields are better in these

plants. In addition these plants show tolerance to higher temperatures.

Based on the above discussion can you compare plants showing

the C
3
 and the C

4
 pathway?  Use the table format given and fill in the

information.
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TABLE 13.1 Fill in the Columns 2 and 3 in this table to highlight the differences

between C
3
 and C

4
 Plants

Characteristics C
3
 Plants C

4
 Plants Choose from

Cell type in which the Calvin Mesophyll/Bundle sheath/both
cycle takes place

Cell type in which the initial Mesophyll/Bundle sheath /both
carboxylation reaction occurs

How many cell types does the Two: Bundle sheath and
leaf have that fix CO

2
. mesophyll

One: Mesophyll
Three: Bundle sheath, palisade,
spongy mesophyll

Which is the primary CO
2
 acceptor RuBP/PEP/PGA

Number of carbons  in the 5 / 4 / 3
primary CO

2
 acceptor

Which is the primary CO
2

PGA/OAA/RuBP/PEP
fixation product

No. of carbons in the primary 3 / 4 / 5
CO

2
 fixation product

Does the plant have RuBisCO? Yes/No/Not always

Does the plant have PEP Case? Yes/No/Not always

Which cells in the plant have Mesophyll/Bundle sheath/none
Rubisco?

CO
2
 fixation rate under high Low/ high/ medium

light conditions

Whether photorespiration is High/negligible/sometimes
present at low light intensities

Whether photorespiration is High/negligible/sometimes
present at high light intensities

Whether photorespiration would be High/negligible/sometimes
present at low CO

2
 concentrations

Whether photorespiration would be High/negligible/sometimes
present at high CO

2
 concentrations

Temperature optimum 30-40 C/20-25C/above 40 C

Examples Cut vertical sections of leaves of
different plants and observe under
the microscope for Kranz anatomy
and list them in the appropriate
columns.
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13.10 FACTORS AFFECTING PHOTOSYNTHESIS

An understanding of the factors that affect photosynthesis is necessary.

The rate of photosynthesis is very important in determining the yield of

plants including crop plants.  Photosynthesis is under the influence of

several factors, both internal (plant) and external. The plant factors include

the number, size, age and orientation of leaves, mesophyll cells and

chloroplasts, internal CO
2
 concentration and the amount of chlorophyll.

The plant or internal factors are dependent on the genetic predisposition

and the growth of the plant.

The external factors would include the availability of sunlight,

temperature, CO
2
 concentration and water.  As a plant photosynthesises,

all these factors will simultaneously affect its rate. Hence, though several

factors interact and simultaneously affect photosynthesis or CO
2
 fixation,

usually one factor is the major cause or is the one that limits the rate.

Hence, at any point the rate will be determined by the factor available at

sub-optimal levels.

When several factors affect any [bio] chemical process, Blackman’s

(1905) Law of Limiting Factors comes into effect. This states the following:

If a chemical process is affected by more than one factor, then its

rate will be determined by the factor which is nearest to its minimal

value: it is the factor which directly affects the process if its quantity is

changed.

For example, despite the presence of a green

leaf and optimal light and CO
2
 conditions, the

plant may not photosynthesise if the temperature

is very low. This leaf, if given the optimal

temperature, will start photosynthesising.

13.10.1 Light

We need to distinguish between light quality, light

intensity and the duration of exposure to light,

while discussing light as a factor that affects

photosynthesis. There is a linear relationship

between incident light and CO
2
 fixation rates at

low light intensities. At higher light intensities,

gradually the rate does not show further increase

as other factors become limiting (Figure 13.10).

What is interesting to note is that light saturation

occurs at 10 per cent of the full sunlight. Hence,

except for plants in shade or in dense forests, light

is rarely a limiting factor in nature. Increase in
Figure 13.10 Graph of light intensity on the

rate of photosynthesis
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incident light beyond a point causes the breakdown of chlorophyll and a

decrease in photosynthesis.

13.10.2 Carbon dioxide Concentration

Carbon dioxide is the major limiting factor for photosynthesis.  The

concentration of CO
2
 is very low in the atmosphere (between 0.03 and

0.04 per cent). Increase in concentration upto 0.05 per cent can cause an

increase in CO
2
 fixation rates; beyond this the levels can become damaging

over longer periods.

The C
3
 and C

4
 plants respond differently to CO

2
 concentrations.  At

low light conditions neither group responds to high CO
2
 conditions.  At

high light intensities, both C
3
 and C

4 
plants show increase in the rates of

photosynthesis. What is important to note is that the C
4
 plants show

saturation at about 360 µlL-1 while C
3
 responds to increased CO

2

concentration and saturation is seen only beyond 450 µlL-1.  Thus, current

availability of CO
2
 levels is limiting to the C

3
 plants.

The fact that C
3
 plants respond to higher CO

2
 concentration by

showing increased rates of photosynthesis leading to higher productivity

has been used for some greenhouse crops such as tomatoes and bell

pepper. They are allowed to grow in carbon dioxide enriched atmosphere

that leads to higher yields.

13.10.3 Temperature

The dark reactions being enzymatic are temperature controlled. Though

the light reactions are also temperature sensitive they are affected to a

much lesser extent. The C
4
 plants respond to higher temperatures and

show higher rate of photosynthesis while C
3
 plants have a much lower

temperature optimum.

The temperature optimum for photosynthesis of different plants also

depends on the habitat that they are adapted to.  Tropical plants have a

higher temperature optimum than the plants adapted to temperate

climates.

13.10.4 Water

Even though water is one of the reactants in the light reaction, the effect of

water as a factor is more through its effect on the plant, rather than directly

on photosynthesis. Water stress causes the stomata to close hence reducing

the CO
2
 availability. Besides, water stress also makes leaves wilt, thus,

reducing the surface area of the leaves and their metabolic activity as well.
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SUMMARY

Green plants make their own food by photosynthesis. During this process carbon

dioxide from the atmosphere is taken in by leaves through stomata and used for

making carbohydrates, principally glucose and starch.  Photosynthesis takes place

only in the green parts of the plants, mainly the leaves. Within the leaves, the

mesophyll cells have a large number of chloroplasts that are responsible for CO
2

fixation.  Within the chloroplasts, the membranes are sites for the light reaction,

while the chemosynthetic pathway occurs in the stroma.  Photosynthesis has two

stages: the light reaction and the carbon fixing reactions. In the light reaction the

light energy is absorbed by the pigments present in the antenna, and funnelled to

special chlorophyll a molecules called reaction centre chlorophylls. There are two

photosystems, PS I and PS II. PS I has a 700 nm absorbing chlorophyll a P700

molecule at its reaction centre, while PS II has a P680 reaction centre that absorbs

red light at 680 nm.  After absorbing light, electrons are excited and transferred

through PS II and PS I and finally to NAD forming NADH. During this process a

proton gradient is created across the membrane of the thylakoid. The breakdown

of the protons gradient due to movement through the F
0
 part of the ATPase enzyme

releases enough energy for synthesis of ATP.  Splitting of water molecules is

associated with PS II resulting in the release of O
2
, protons and transfer of electrons

to PS II.

In the carbon fixation cycle, CO
2
 is added by the enzyme, RuBisCO, to a 5-

carbon compound RuBP that is converted to 2 molecules of 3-carbon PGA. This

is then converted to sugar by the Calvin cycle, and the RuBP is regenerated. During

this process ATP and NADPH synthesised in the light reaction are utilised. RuBisCO

also catalyses a wasteful oxygenation reaction in C
3
 plants: photorespiration.

Some tropical plants show a special type of photosynthesis called C
4
 pathway.

In these plants the first product of CO
2
 fixation that takes place in the mesophyll,

is a 4-carbon compound.  In the bundle sheath cells the Calvin pathway is carried

out for the synthesis of carbohydrates.

EXERCISES

1. By looking at a plant externally can you tell whether a plant is C
3
 or C

4
? Why and

how?

2. By looking at which internal structure of a plant can you tell whether a plant is

C
3 
or C

4
? Explain.

3. Even though a very few cells in a C
4
 plant carry out the biosynthetic – Calvin

pathway, yet they are highly productive. Can you discuss why?
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4. RuBisCO is an enzyme that acts both as a carboxylase and oxygenase. Why do

you think RuBisCO carries out more carboxylation in C
4
 plants?

5. Suppose there were plants that had a high concentration of Chlorophyll b, but

lacked chlorophyll a, would it carry out photosynthesis? Then why do plants

have chlorophyll b and other accessory pigments?

6. Why is the colour of a leaf kept in the dark frequently yellow, or pale green?

Which pigment do you think is more stable?

7. Look at leaves of the same plant on the shady side and compare it with the

leaves on the sunny side. Or, compare the potted plants kept in the sunlight with

those in the shade. Which of them has leaves that are darker green ? Why?

8. Figure 13.10 shows the effect of light on the rate of photosynthesis.  Based on the

graph, answer the following questions:

(a) At which point/s (A, B or C) in the curve is light a limiting factor?

(b) What could be the limiting factor/s in region A?

(c) What do C and  D represent on the curve?

9. Give comparison between the following:

(a) C
3
 and C

4
 pathways

(b) Cyclic and non-cyclic photophosphorylation

(c) Anatomy of leaf in C
3
 and C

4
 plants
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All of us breathe to live, but why is breathing so essential to life? What

happens when we breathe? Also, do all living organisms, including plants

and microbes, breathe? If so, how?

All living organisms need energy for carrying out daily life activities,

be it absorption, transport, movement, reproduction or even breathing.

Where does all this energy come from? We know we eat food for energy –

but how is this energy taken from food?  How is this energy utilised? Do

all foods give the same amount of energy? Do plants ‘eat’? Where do plants

get their energy from? And micro-organisms – for their energy

requirements, do they eat ‘food’?

You may wonder at the several questions raised above – they may

seem to be very disconnected.  But in reality, the process of breathing is

very much connected to the process of release of energy from food.  Let us

try and understand how this happens.

All the energy required for ‘life’ processes is obtained by oxidation of

some macromolecules that we call ‘food’. Only green plants and

cyanobacteria can prepare their own food; by the process of photosynthesis

they trap light energy and convert it into chemical energy that is stored in

the bonds of carbohydrates like glucose, sucrose and starch.  We must

remember that in green plants too, not all cells, tissues and organs

photosynthesise; only cells containing chloroplasts, that are most often

located in the superficial layers, carry out photosynthesis.  Hence, even

in green plants all other organs, tissues and cells that are non-green,

need food for oxidation. Hence, food has to be translocated to all non-

green parts. Animals are heterotrophic, i.e., they obtain food from plants
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directly (herbivores) or indirectly (carnivores). Saprophytes like fungi are

dependent on dead and decaying matter.  What is important to recognise

is that ultimately all the food that is respired for life processes comes from

photosynthesis. This chapter deals with cellular respiration or the

mechanism of breakdown of food materials within the cell to release

energy, and the trapping of this energy for synthesis of ATP.

Photosynthesis, of course, takes place within the chloroplasts (in the

eukaryotes), whereas the breakdown of complex molecules to yield energy

takes place in the cytoplasm and in the mitochondria  (also only in

eukaryotes).  The breaking of the C-C bonds of complex compounds

through oxidation within the cells, leading to release of considerable

amount of energy is called respiration.  The compounds that are oxidised

during this process are known as respiratory substrates. Usually

carbohydrates are oxidised to release energy, but proteins, fats and even

organic acids can be used as respiratory substances in some plants, under

certain conditions.  During oxidation within a cell, all the energy contained

in respiratory substrates is not released free into the cell, or in a single

step. It is released in a series of slow step-wise reactions controlled by

enzymes, and it is trapped as chemical energy in the form of ATP.  Hence,

it is important to understand that the energy released by oxidation in

respiration is not (or rather cannot be) used directly but is used to

synthesise ATP, which is broken down whenever (and wherever) energy

needs to be utilised. Hence, ATP acts as the energy currency of the cell.

This energy trapped in ATP is utilised in various energy-requiring

processes of the organisms, and the carbon skeleton produced during

respiration is used as precursors for biosynthesis of other molecules in

the cell.

14.1 DO PLANTS BREATHE?

Well, the answer to this question is not quite so direct.  Yes, plants require

O
2
 for respiration to occur and they also give out CO

2
.  Hence, plants have

systems in place that ensure the availability of O
2
.  Plants, unlike animals,

have no specialised organs for gaseous exchange but they have stomata

and lenticels for this purpose. There are several reasons why plants can

get along without respiratory organs. First, each plant part takes care of

its own gas-exchange needs.  There is very little transport of gases from

one plant part to another.  Second, plants do not present great demands

for gas exchange.  Roots, stems and leaves respire at rates far lower than

animals do. Only during photosynthesis are large volumes of gases

exchanged and, each leaf is well adapted to take care of its own needs

during these periods. When cells photosynthesise, availability of O
2
 is not

a problem in these cells since O
2
 is released within the cell.  Third, the

2018-19



228 BIOLOGY

distance that gases must diffuse even in large, bulky plants is not great.

Each living cell in a plant is located quite close to the surface of the plant.

‘This is true for leaves’, you may ask, ‘but what about thick, woody stems

and roots?’ In stems, the ‘living’ cells are organised in thin layers inside

and beneath the bark. They also have openings called lenticels. The cells

in the interior are dead and provide only mechanical support. Thus, most

cells of a plant have at least a part of their surface in contact with air. This

is also facilitated by the loose packing of parenchyma cells in leaves, stems

and roots, which provide an interconnected network of air spaces.

The complete combustion of glucose, which produces CO
2
 and H

2
O

as end products, yields energy most of which is given out as heat.

C H O O CO H O Energy6 12 6 2 2 26 6 6+  → + +

If this energy is to be useful to the cell, it should be able to utilise it to

synthesise other molecules that the cell requires.  The strategy that the

plant cell uses is to catabolise the glucose molecule in such a way that

not all the liberated energy goes out as heat.  The key is to oxidise glucose

not in one step but in several small steps enabling some steps to be just

large enough such that the energy released can be coupled to ATP

synthesis.  How this is done is, essentially, the story of respiration.

During the process of respiration, oxygen is utilised, and carbon

dioxide, water and energy are released as products. The combustion

reaction requires oxygen. But some cells live where oxygen may or may

not be available. Can you think of such situations (and organisms) where

O
2
 is not available?   There are sufficient reasons to believe that the first

cells on this planet lived in an atmosphere that lacked oxygen.  Even

among present-day living organisms, we know of several that are adapted

to anaerobic conditions.  Some of these organisms are facultative

anaerobes, while in others the requirement for anaerobic condition is

obligate.  In any case, all living organisms retain the enzymatic machinery

to partially oxidise glucose without the help of oxygen.  This breakdown

of glucose to pyruvic acid is called glycolysis.

14.2 GLYCOLYSIS

The term glycolysis has originated from the Greek words, glycos for sugar,

and lysis for splitting.  The scheme of glycolysis was given by Gustav

Embden, Otto Meyerhof, and J. Parnas, and is often referred to as the

EMP pathway. In anaerobic organisms, it is the only process in respiration.

Glycolysis occurs in the cytoplasm of the cell and is present in all living

organisms.  In this process, glucose undergoes partial oxidation to form

two molecules of pyruvic acid. In plants, this glucose is derived from

sucrose, which is the end product of photosynthesis, or from storage
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carbohydrates. Sucrose is converted into glucose

and fructose by the enzyme, invertase, and these

two monosaccharides readily enter the glycolytic

pathway. Glucose and fructose are

phosphorylated to give rise to glucose-6-

phosphate by the activity of the enzyme

hexokinase. This phosphorylated form of glucose

then isomerises to produce fructose-6-

phosphate. Subsequent steps of metabolism of

glucose and fructose are same.  The various steps

of glycolysis are depicted in Figure 14.1. In

glycolysis, a chain of ten reactions, under the

control of different enzymes, takes place to

produce pyruvate from glucose. While studying

the steps of glycolysis, please note the steps at

which utilisation or synthesis of ATP or (in this

case) NADH + H+ take place.

ATP is utilised at two steps: first in the

conversion of glucose into glucose 6-phosphate

and second in the conversion of fructose

6-phosphate to fructose 1, 6-bisphosphate.

The fructose 1, 6-bisphosphate is split

into dihydroxyacetone phosphate and

3-phosphoglyceraldehyde (PGAL). We find

that there is one step where NADH + H+ is

formed from NAD+; this is when

3-phosphoglyceraldehyde (PGAL) is converted

to 1, 3-bisphosphoglycerate (BPGA).  Two

redox-equivalents are removed (in the form of

two hydrogen atoms) from PGAL and transferred

to a molecule of NAD+. PGAL is oxidised and

with inorganic phosphate to get converted into

BPGA. The conversion of BPGA to

3-phosphoglyceric acid (PGA), is also an energy

yielding process; this energy is trapped by the

formation of ATP.  Another ATP is synthesised

during the conversion of PEP to pyruvic acid.

Can you then calculate how many ATP

molecules are directly synthesised in this

pathway from one glucose molecule?

Pyruvic acid is then the key product of

glycolysis. What is the metabolic fate of

pyruvate?  This depends on the cellular need.

Glucose
(6C)

Glucose-6-phosphate
(6C)

Fructose-6-phosphate
(6C)

Fructose1, 6-bisphosphate
(6C)

Triose phosphate
(glyceraldehyde-3-phosphate)

(3C)

Triose phosphate
(Dihydroxy acetone

phosphate)
(3C)

2 × Triose bisphosphate
(1,3 bisphosphoglyceric acid)

(3C)

2 × Triose phosphate
(3-phosphoglyceric acid)

(3C)

2 × 2-phosphoglycerate

2 × phosphoenolpyruvate

2 × Pyruvic acid
(3C)

ADP

ATP

ADP

ATP

ADP

ATP

ADP

NADH+H+

NAD+

H2O

ATP

Figure 14.1   Steps of glycolysis
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There are three major ways in which different cells handle pyruvic acid

produced by glycolysis.  These are lactic acid fermentation, alcoholic

fermentation and aerobic respiration. Fermentation takes place under

anaerobic conditions in many prokaryotes and unicellular eukaryotes.

For the complete oxidation of glucose to CO
2
 and H

2
O, however, organisms

adopt Krebs’ cycle which is also called as aerobic respiration. This requires

O
2
 supply.

14.3 FERMENTATION

In fermentation, say by yeast, the incomplete oxidation of glucose is

achieved under anaerobic conditions by sets of reactions where pyruvic

acid is converted to CO
2
 and ethanol. The enzymes, pyruvic acid

decarboxylase and alcohol dehydrogenase catalyse these reactions. Other

organisms like some bacteria produce lactic acid from pyruvic acid.  The

steps involved are shown in Figure 14.2. In animal cells also, like muscles

during exercise, when oxygen is inadequate for cellular respiration pyruvic

acid is reduced to lactic acid by lactate dehydrogenase.  The reducing

agent is NADH+H+  which is reoxidised to NAD+ in both the processes.

In both lactic acid and alcohol

fermentation not much energy is released; less

than seven per cent of the energy in glucose

is released and not all of it is trapped as high

energy bonds of ATP.  Also, the processes are

hazardous – either acid or alcohol is

produced.  What is the net ATPs that is

synthesised (calculate how many ATP are

synthesised and deduct the number of ATP

utilised during glycolysis) when one molecule

of glucose is fermented to alcohol or lactic

acid?  Yeasts poison themselves to death when

the concentration of alcohol reaches about 13

per cent. What then would be the

maximum concentration of alcohol in

beverages that are naturally fermented?

How do you think alcoholic beverages of

alcohol content greater than this concentration

are obtained?

What then is the process by which

organisms can carry out complete oxidation

of glucose and extract the energy stored to

Figure 14.2 Major pathways of anaerobic
respiration
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synthesise a larger number of ATP molecules needed for cellular

metabolism?  In eukaryotes these steps take place within the mitochondria

and this requires O
2
.
 
Aerobic respiration is the process that leads to a

complete oxidation of organic substances in the presence of oxygen, and

releases CO
2
, water and a large amount of energy present in the substrate.

This type of respiration is most common in higher organisms. We will

look at these processes in the next section.

14.4 AEROBIC RESPIRATION

For aerobic respiration to take place within the mitochondria, the final

product of glycolysis, pyruvate is transported from the cytoplasm into

the mitochondria.  The crucial events in aerobic respiration are:

• The complete oxidation of pyruvate by the stepwise removal of all

the hydrogen atoms, leaving three molecules of CO
2
.

• The passing on of the electrons removed as part of the hydrogen

atoms to molecular O
2 
 with simultaneous synthesis of ATP.

What is interesting to note is that the first process takes place in the

matrix of the mitochondria while the second process is located on the

inner membrane of the mitochondria.

Pyruvate, which is formed by the glycolytic catabolism of carbohydrates

in the cytosol, after it enters mitochondrial matrix undergoes oxidative

decarboxylation by a complex set of reactions catalysed by pyruvic

dehydrogenase. The reactions catalysed by pyruvic dehydrogenase require

the participation of several coenzymes, including NAD+ and  Coenzyme A.

Pyruvic acid CoA NAD
Mg

Pyruvate dehydrogenase
+ +  →

+
+2

 + + +
+Acetyl CoA CO NADH H2

During this process, two molecules of NADH are produced from the

metabolism of two molecules of pyruvic acid (produced from one glucose

molecule during glycolysis).

The acetyl CoA then enters a cyclic pathway, tricarboxylic acid cycle,

more commonly called as Krebs’ cycle after the scientist Hans Krebs who

first elucidated it.

14.4.1 Tricarboxylic Acid Cycle

The TCA cycle starts with the condensation of acetyl group with oxaloacetic

acid (OAA) and water to yield citric acid (Figure 14.3). The reaction is

catalysed by the enzyme citrate synthase and a molecule of CoA is released.

Citrate is then isomerised to isocitrate.  It is followed by two successive

steps of decarboxylation, leading to the formation of α-ketoglutaric acid
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Figure 14.3   The Citric acid cycle

Pyruvate
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GTP
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FADH2
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+ + + + +  →

+ +4 2 2  + +
+3 4 42CO NADH H

and then succinyl-CoA.  In the remaining steps

of citric acid cycle, succinyl-CoA is oxidised

to OAA allowing the cycle to continue. During

the conversion of succinyl-CoA to succinic

acid a molecule of GTP is synthesised. This is

a substrate level phosphorylation.  In a

coupled reaction GTP is converted to GDP with

the simultaneous synthesis of ATP from ADP.

Also there are three points in the cycle where

NAD+ is reduced to NADH + H+ and one point

where FAD+ is reduced to FADH
2
. The

continued oxidation of acetyl CoA via the TCA

cycle requires the continued replenishment of

oxaloacetic acid, the first member of the cycle.

In addition it also requires regeneration of

NAD+ and FAD+ from NADH and FADH2

respectively. The summary equation for this

phase of respiration may be written as follows:

+ +2FADH ATP

CoA NAD+

NADH+H+

CO2

We have till now seen that glucose has been broken down to release

CO2 and eight molecules of NADH + H+; two of  FADH
2 

have been

synthesised besides just two molecules of ATP in TCA cycle.  You may be

wondering why we have been discussing respiration at all – neither O
2

has come into the picture nor the promised large number of ATP has yet

been synthesised. Also what is the role of the NADH + H+ and FADH
2 
that

is synthesised?
 
Let us now understand the role of O

2
 in respiration and

how ATP is synthesised.

14.4.2 Electron Transport System (ETS) and Oxidative
Phosphorylation

The following steps in the respiratory process are to release and utilise

the energy stored in NADH+H+ and FADH
2. 

 This is accomplished when

they are oxidised through the electron transport system and the electrons

are passed on to O
2
 resulting in the formation of H

2
O.  The metabolic

pathway through which the electron passes from one carrier to another,

is called the electron transport system (ETS) (Figure 14.4) and it is

present in the inner mitochondrial membrane. Electrons from NADH
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produced in the mitochondrial matrix

during citric acid cycle are oxidised by an

NADH dehydrogenase (complex I), and

electrons are then transferred to

ubiquinone located

within the inner membrane. Ubiquinone

also receives reducing equivalents via

FADH
2
 (complex II) that is generated

during oxidation of succinate in the citric

acid cycle. The reduced ubiquinone

(ubiquinol) is then oxidised with the

transfer of electrons to cytochrome c via

cytochrome bc
1
 complex (complex III).

Cytochrome c is a small protein attached

to the outer surface of the inner

membrane and acts as a mobile carrier

for transfer of electrons between complex

III and IV.  Complex IV refers to

cytochrome c oxidase complex containing

cytochromes a and a
3
, and two copper

centres.

When the electrons pass from one

carrier to another via complex I to IV in

the electron transport chain, they are

coupled to ATP synthase (complex V) for

the production of ATP from ADP and

inorganic phosphate. The number of ATP

molecules synthesised depends on the

nature of the electron donor. Oxidation of

one molecule of NADH gives rise to 3

molecules of ATP, while that of one

molecule of FADH
2
 produces 2 molecules

of ATP. Although the aerobic process of

respiration takes place only in the

presence of oxygen, the role of oxygen is

limited to the terminal stage of the

process.  Yet, the presence of oxygen is vital, since it drives the whole

process by removing hydrogen from the system.  Oxygen acts as the final

hydrogen acceptor. Unlike photophosphorylation where it is the light

energy that is utilised for the production of proton gradient required for

phosphorylation, in respiration it is the energy of oxidation-reduction

utilised for the same process. It is for this reason that the process is called

oxidative phosphorylation.

You have already studied about the mechanism of membrane-linked

ATP synthesis as explained by chemiosmotic hypothesis in the earlier

chapter.  As mentioned earlier, the energy released during the electron

Figure 14.4 Electron Transport System (ETS)
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transport system is utilised in synthesising ATP

with the help of ATP synthase (complex V).  This

complex consists of two major components, F
1

and F
0 

(Figure 14.5).  The F
1
 headpiece is a

peripheral membrane protein complex and

contains the site for synthesis of ATP from ADP

and inorganic phosphate. F
0
 is an integral

membrane protein complex that forms the

channel through which protons cross the inner

membrane.  The passage of protons through the

channel is coupled to the catalytic site of the F
1

component for the production of ATP.  For each

ATP produced, 2H+ passes through F
0
 from the

intermembrane space to the matrix down the

electrochemical proton gradient.

14.5 THE RESPIRATORY BALANCE SHEET

It is possible to make calculations of the net gain of ATP for every glucose

molecule  oxidised; but in reality this can remain only a theoretical exercise.

These calculations can be made only on certain assumptions that:

• There is a sequential, orderly pathway functioning, with one

substrate forming the next and with glycolysis, TCA cycle and ETS

pathway following one after another.

• The NADH synthesised in glycolysis is transferred into the

mitochondria and undergoes oxidative phosphorylation.

• None of the intermediates in the pathway are utilised to synthesise

any other compound.

• Only glucose is being respired – no other alternative substrates are

entering in the pathway at any of the intermediary stages.

But this kind of assumptions are not really valid in a living system; all

pathways work simultaneously and do not take place one after another;

substrates enter the pathways and are withdrawn from it as and when

necessary; ATP is utilised as and when needed;  enzymatic rates are

controlled by multiple means.  Yet, it is useful to do this exercise to

appreciate the beauty and efficiency of the living system in extraction

and storing energy. Hence, there can be a net gain of 38 ATP molecules

during aerobic respiration of one molecule of glucose.

Figure 14.5  Diagramatic presentation of ATP
synthesis in mitochondria
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Now let us  compare  fermentation and aerobic respiration:

• Fermentation accounts for only a partial breakdown of glucose

whereas in aerobic respiration it is completely degraded to CO
2
 and

H
2
O.

• In fermentation there is a net gain of only two molecules of ATP for

each molecule of glucose degraded to pyruvic acid whereas many

more molecules of ATP are generated under aerobic conditions.

• NADH is oxidised to NAD+ rather slowly in fermentation, however

the reaction is very vigorous in case of aerobic respiration.

14.6 AMPHIBOLIC PATHWAY

Glucose is the favoured substrate for respiration.  All carbohydrates are

usually first converted into glucose before they are used for respiration.

Other substrates can also be respired, as has been mentioned earlier, but

then they do not enter the respiratory pathway at the first step. See Figure

14.6 to see the points of entry of different substrates in the respiratory

pathway. Fats would need to be broken down into glycerol and fatty acids

first. If fatty acids were to be respired they would first be degraded to

acetyl CoA and enter the pathway. Glycerol would enter the pathway

after being converted to PGAL. The proteins would be degraded by

proteases and the individual amino acids (after deamination) depending

on their structure would enter the pathway at some stage within the Krebs’

cycle or even as pyruvate or acetyl CoA.

Since respiration involves breakdown of substrates, the respiratory

process has traditionally been considered a catabolic process and the

respiratory pathway as a catabolic pathway.  But is this understanding

correct?  We have discussed above, at which points in the respiratory

pathway different substrates would enter if they were to be respired and

used to derive energy. What is important to recognise is that it is these very

compounds that would be withdrawn from the respiratory pathway for the

synthesis of the said substrates. Hence, fatty acids would be broken down

to acetyl CoA before entering the respiratory pathway when it is used as a

substrate. But when the organism needs to synthesise fatty acids, acetyl

CoA would be withdrawn from the respiratory pathway for it. Hence, the

respiratory pathway comes into the picture both during breakdown and

synthesis of fatty acids. Similarly, during breakdown and synthesis of

protein too, respiratory intermediates form the link. Breaking down

processes within the living organism is catabolism, and synthesis is

anabolism.  Because the respiratory pathway is involved in both anabolism

and catabolism, it would hence be better to consider the respiratory pathway

as an amphibolic pathway rather than as a catabolic one.

2018-19



236 BIOLOGY

14.7 RESPIRATORY QUOTIENT

Let us now look at another aspect of respiration. As you know, during

aerobic respiration, O
2
 is consumed and CO

2
 is released. The ratio of the

volume of CO
2
 evolved to the volume of O

2
 consumed in respiration is

called the respiratory quotient (RQ) or respiratory ratio.

RQ
volumeof CO evolved

volumeof O consumed
=

2

2

The respiratory quotient depends upon the type of respiratory

substrate used during respiration.

When carbohydrates are used as substrate and are completely

oxidised, the RQ will be 1, because equal amounts of CO
2
 and O

2
 are

evolved and consumed, respectively, as shown in the equation below :

Figure 14.6 Interrelationship among metabolic pathways showing respiration
mediated breakdown of different organic molecules to CO

2
 and H

2
0
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C H O O CO H O Energy6 12 6 2 2 26 6 6+  → + +

RQ
CO

O
= =

6

6
1 02

2

.

When fats are used in respiration, the RQ is less than 1. Calculations

for a fatty acid, tripalmitin, if used as a substrate is shown:

2 145 102 9851 98 6 2 2 2( )C H O O CO H O energy+  → + +

        Tripalmitin

RQ
CO

O
= =

102

145
0 72

2

.

When proteins are respiratory substrates the ratio would be about

0.9.

What is important to recognise is that in living organisms respiratory

substrates are often more than one; pure proteins or fats are never used

as respiratory substrates.

SUMMARY

Plants unlike animals have no special systems for breathing or gaseous exchange.

Stomata and lenticels allow gaseous exchange by diffusion. Almost all living cells

in a plant have their surfaces exposed to air.

The breaking of C-C bonds of complex organic molecules by oxidation cells

leading to the release of a lot of energy is called cellular respiration. Glucose is the

favoured substrate for respiration. Fats and proteins can also be broken down to

yield energy. The initial stage of cellular respiration takes place in the cytoplasm.

Each glucose molecule is broken through a series of enzyme catalysed reactions

into two molecules of pyruvic acid. This process is called glycolysis. The fate of the

pyruvate depends on the availability of oxygen and the organism. Under anaerobic

conditions either lactic acid fermentation or alcohol fermentation occurs.

Fermentation takes place under anaerobic conditions in many prokaryotes,

unicellular eukaryotes and in germinating seeds. In eukaryotic organisms aerobic

respiration occurs  in the presence of oxygen. Pyruvic acid is transported into the

mitochondria where it is converted into acetyl CoA with the release of CO
2
. Acetyl

CoA then enters the tricarboxylic acid pathway or Krebs’ cycle operating in the

matrix of the mitochondria. NADH + H+ and FADH
2
 are generated in the Krebs’

cycle. The energy in these molecules as well as that in the NADH + H+ synthesised

during glycolysis are used to synthesise ATP. This is accomplished through a
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system of electron carriers called electron transport system (ETS) located on the

inner membrane of the mitochondria. The electrons, as they move through the

system, release enough energy that are trapped to synthesise ATP. This is called

oxidative phosphorylation. In this process O
2
 is the ultimate acceptor of electrons

and it gets reduced to water.

The respiratory pathway is an amphibolic pathway as it involves both anabolism

and catabolism. The respiratory quotient depends upon the type of respiratory

substance used during respiration.

EXERCISES

1. Differentiate between

(a) Respiration and Combustion

(b) Glycolysis and Krebs’ cycle

(c) Aerobic respiration and Fermentation

2. What are respiratory substrates? Name the most common respiratory substrate.

3. Give the schematic representation of glycolysis?

4. What are the main steps in aerobic respiration? Where does it take place?

5. Give the schematic representation of an overall view of Krebs’ cycle.

6. Explain ETS.

7. Distinguish between the following:

(a) Aerobic respiration and Anaerobic respiration

(b) Glycolysis and Fermentation

(c) Glycolysis and Citric acid Cycle

8. What are the assumptions made during the calculation of net gain of ATP?

9. Discuss “The respiratory pathway is an amphibolic pathway.”

10. Define RQ. What is its value for fats?

11. What is oxidative phosphorylation?

12. What is the significance of step-wise release of energy in respiration?
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You have already studied the organisation of a flowering plant in Chapter

5. Have you ever thought about where and how the structures like roots,

stems, leaves, flowers, fruits and seeds arise and that too in an orderly

sequence? You are, by now, aware of the terms seed, seedling, plantlet,

mature plant. You have also seen that trees continue to increase in height

or girth over a period of time. However, the leaves, flowers and fruits of the

same tree not only have limited dimensions but also appear and fall

periodically and some time repeatedly. Why does vegetative phase precede

flowering in a plant? All plant organs are made up of a variety of tissues; is

there any relationship between the structure of a cell, a tissue, an organ

and the function they perform? Can the structure and the function of these

be altered? All cells of a plant are descendents of the zygote. The question

is, then, why and how do they have different structural and functional

attributes? Development is the sum of two processes: growth and

differentiation. To begin with, it is essential and sufficient to know that the

development of a mature plant from a zygote (fertilised egg) follow a precise

and highly ordered succession of events. During this process a complex

body organisation is formed that produces roots, leaves, branches, flowers,

fruits, and seeds, and eventually they die (Figure 15.1). The first step in the

process of plant growth is seed germination. The seed germinates when

favourable conditions for growth exist in the environment. In absence of

such favourable conditions the seeds do not germinate and goes into a

period of suspended growth or rest. Once favourable conditions return,

the seeds resume metabolic activities and growth takes place.

In this chapter, you shall also study some of the factors which

govern and control these developmental processes. These factors are both

intrinsic (internal) and extrinsic (external) to the plant.

PLANT GROWTH AND DEVELOPMENT

CHAPTER  15

15.1 Growth

15.2 Differentiation,

Dedifferentiation

and

Redifferentiation

15.3 Development

15.4 Plant Growth

Regulators

15.5 Photoperiodism

15.6 Vernalisation
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15.1 GROWTH

Growth is regarded as one of the most fundamental and conspicuous

characteristics of a living being. What is growth? Growth can be defined

as an irreversible permanent increase in size of an organ or its parts or

even of an individual cell. Generally, growth is accompanied by metabolic

processes (both anabolic and catabolic), that occur at the expense of

energy. Therefore, for example, expansion of a leaf is growth. How would

you describe the swelling of piece of wood when placed in water?

15.1.1  Plant Growth Generally is Indeterminate

Plant growth is unique because plants retain the capacity for unlimited

growth throughout their life. This ability of the plants is due to the presence

of meristems at certain locations in their body. The cells of such meristems

have the capacity to divide and self-perpetuate. The product, however,

soon loses the capacity to divide and such cells make up the plant body.

This form of growth wherein new cells are always being added to the

plant body by the activity of the meristem is called the open form of growth.

What would happen if the meristem ceases to divide? Does this ever

happen?

In Chapter 6, you have studied about the root apical meristem and

the shoot apical meristem. You know that they are responsible for the

Seed coat

Epicotyl
hook

Cotyledons
CotyledonSoil line

Epicotyl

Hypocotyl
Hypocotyl

Figure 15.1 Germination and seedling development in bean
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primary growth of the plants and principally

contribute to the elongation of the plants along

their axis. You also know that in dicotyledonous

plants and gymnosperms, the lateral meristems,

vascular cambium and cork-cambium appear

later in life. These are the meristems that cause

the increase in the girth of the organs in which

they are active. This is known as secondary

growth of the plant (see Figure 15.2).

15.1.2 Growth is Measurable

Growth, at a cellular level, is principally a

consequence of increase in the amount of

protoplasm. Since increase in protoplasm is

difficult to measure directly, one generally

measures some quantity which is more or less

proportional to it. Growth is, therefore,

measured by a variety of parameters some of

which are: increase in fresh weight, dry weight,

length, area, volume and cell number. You may

find it amazing to know that one single maize

root apical mersitem can give rise to more than

17,500 new cells per hour, whereas cells in a

watermelon may increase in size by upto

3,50,000 times. In the former, growth is

expressed as increase in cell number; the latter

expresses growth as increase in size of the cell.

While the growth of a pollen tube is measured

in terms of its length, an increase in surface area

denotes the growth in a dorsiventral leaf.

15.1.3 Phases of Growth

The period of growth is generally divided into

three phases, namely, meristematic, elongation

and maturation (Figure 15.3). Let us

understand this by looking at the root tips. The

constantly dividing cells, both at the root apex

and the shoot apex, represent the meristematic

phase of growth. The cells in this region are rich

in protoplasm, possess large conspicuous

nuclei. Their cell walls are primary in nature,

thin and cellulosic with abundant

plasmodesmatal connections. The cells

proximal (just next, away from the tip) to the

Shoot apical
meristem

Vascular
cambium

Vascular
cambium

Root apical
meristem

Shoot

Root

Figure 15.2 Diagrammatic representation of
locations of root apical meristem,
shoot aplical meristem and
vascular cambium. Arrows exhibit
the direction of growth of cells and
organ

G
F
E

D

C

B

A

Figure 15.3 Detection of zones of elongation by
the parallel line technique. Zones
A, B, C, D immediately behind the
apex have elongated most.

2018-19



242 BIOLOGY

meristematic zone represent the phase of elongation. Increased

vacuolation, cell enlargement and new cell wall deposition are the

characteristics of the cells in this phase. Further away from the apex, i.e.,

more proximal to the phase of elongation, lies the portion of axis which is

undergoing the phase of maturation. The cells of this zone, attain their

maximal size in terms of wall thickening and protoplasmic modifications.

Most of the tissues and cell types you have studied in Chapter 6 represent

this phase.

15.1.4  Growth Rates

The increased growth per unit time is termed as growth rate. Thus, rate

of growth can be expressed mathematically. An organism, or a part of the

organism can produce more cells in a variety of ways.

Figure15.4 Diagrammatic representation of : (a) Arithmetic (b) Geometric growth and
(c) Stages during embryo development showing geometric and arithematic
phases
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The growth rate shows an increase that may be

arithmetic or geometrical (Figure 15.4).

In arithmetic growth, following mitotic cell

division, only one daughter cell continues to divide

while the other differentiates and matures. The

simplest expression of arithmetic growth is

exemplified by a root elongating at a constant rate.

Look at Figure 15.5. On plotting the length of the

organ against time, a linear curve is obtained.

Mathematically, it is expressed as

L
t
 = L

0
 + rt

L
t
 = length at time ‘t’

L
0
 = length at time ‘zero’

r    = growth rate / elongation per unit time.

Let us now see what happens in geometrical

growth. In most systems, the initial growth is slow

(lag phase), and it increases rapidly thereafter – at

an exponential rate (log or exponential phase). Here,

both the progeny cells following mitotic cell division

retain the ability to divide and continue to do so.

However, with limited nutrient supply, the growth

slows down leading to a stationary phase. If we plot

the parameter of growth against time, we get a typical

sigmoid or S-curve (Figure 15.6). A sigmoid curve

is a characteristic of living organism growing in a

natural environment. It is typical for all cells, tissues

and organs of a plant. Can you think of more similar

examples? What kind of a curve can you expect in

a tree showing seasonal activities?

The exponential growth can be expressed as

W1 = W0 e
rt

W
1
 = final size (weight, height, number etc.)

W
0
 = initial size at the beginning of the period

r     = growth rate

t     = time of growth

e    = base of natural logarithms

Here, r is the relative growth rate and is also the

measure of the ability of the plant to produce new

plant material, referred to as efficiency index. Hence,

the final size of W
1
 depends on the initial size, W

0
.

Figure 15.5 Constant linear growth, a plot
of length L against time t

Figure 15.6 An idealised sigmoid growth
curve typical of cells in culture,
and many higher plants and
plant organs
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Quantitative comparisons between the growth of living system can

also be made in two ways : (i) measurement and the comparison of total

growth per unit time is called the absolute growth rate. (ii) The growth of

the given system per unit time expressed on a common basis, e.g., per

unit initial parameter is called the relative growth rate. In Figure 15.7

two leaves, A and B, are drawn that are of different sizes but shows

absolute increase in area in the given time to give leaves, A1 and B1. However,

one of them shows much higher relative growth rate. Which one and why?

15.1.5 Conditions for Growth

Why do you not try to write down what you think are necessary conditions

for growth? This list may have water, oxygen and nutrients as very essential

elements for growth. The plant cells grow in size by cell enlargement which

in turn requires water. Turgidity of cells helps in extension growth. Thus,

plant growth and further development is intimately linked to the water

status of the plant. Water also provides the medium for enzymatic activities

needed for growth. Oxygen helps in releasing metabolic energy essential

for growth activities. Nutrients (macro and micro essential elements) are

required by plants for the synthesis of protoplasm and act as source of

energy.

In addition, every plant organism has an optimum temperature range

best suited for its growth. Any deviation from this range could be

detrimental to its survival. Environmental signals such as light and gravity

also affect certain phases/stages of growth.

Figure15.7 Diagrammatic comparison of absolute and relative growth rates. Both
leaves A and B have increased their area by 5 cm2 in a given time to
produce A1, B1 leaves.
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15.2 DIFFERENTIATION, DEDIFFERENTIATION AND

REDIFFERENTIATION

The cells derived from root apical and shoot-apical meristems and

cambium differentiate and mature to perform specific functions. This act

leading to maturation is termed as differentiation. During differentiation,

cells undergo few to major structural changes both in their cell walls and

protoplasm. For example, to form a tracheary element, the cells would

lose their protoplasm. They also develop a very strong, elastic,

lignocellulosic secondary cell walls, to carry water to long distances even

under extreme tension. Try to correlate the various anatomical features

you encounter in plants to the functions they perform.

Plants show another interesting phenomenon. The living differentiated

cells, that by now have lost the capacity to divide can regain the capacity

of division under certain conditions. This phenomenon is termed as

dedifferentiation. For example, formation of meristems – interfascicular

cambium and cork cambium from fully differentiated parenchyma cells.

While doing so, such meristems/tissues are able to divide and produce

cells that once again lose the capacity to divide but mature to perform

specific functions, i.e., get redifferentiated. List some of the tissues in a

woody dicotyledenous plant that are the products of redifferentiation.

How would you describe a tumour? What would you call the parenchyma

cells that are made to divide under controlled laboratory conditions during

plant tissue culture?

Recall, in Section 15.1.1, we have mentioned that the growth in plants

is open, i.e., it can be indeterminate or determinate. Now, we may say that

even differentiation in plants is open, because cells/tissues arising out of

the same meristem have different structures at maturity. The final

structure at maturity of a cell/tissue is also determined by the location of

the cell within. For example, cells positioned away from root apical

meristems differentiate as root-cap cells, while those pushed to the

periphery mature as epidermis. Can you add a few more examples of

open differentiation correlating the position of a cell to  its position in an

organ?

15.3  DEVELOPMENT

Development is a term that includes all changes that an organism goes

through during its life cycle from germination of the seed to senescence.

Diagrammatic representation of the sequence of processes which

constitute the development of a cell of a higher plant is given in Figure

15.8. It is also applicable to tissues/organs.
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Plants follow different pathways in response to environment or phases

of life to form different kinds of structures. This ability is called plasticity,

e.g., heterophylly in cotton, coriander and larkspur. In such plants, the

leaves of the juvenile plant are different in shape from those in mature

plants. On the other hand, difference in shapes of leaves produced in air

and those produced in water in buttercup also represent the

heterophyllous development due to environment (Figure 15.9). This

phenomenon of heterophylly is an example of plasticity.

Figure 15.8  Sequence of the developmental process in a plant cell

Cell Division Death

Plasmatic growth Differentiation

Expansion
(Elongation)

Maturation

MERISTEMATIC
CELL

SENESCENCE

MATURE
CELL

Figure 15.9  Heterophylly in (a) larkspur and (b) buttercup
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Thus, growth, differentiation and development are very closely related

events in the life of a plant. Broadly, development is considered as the

sum of growth and differentiation. Development in plants (i.e., both growth

and differentiation) is under the control of intrinsic and extrinsic factors.

The former includes both intracellular (genetic) or intercellular factors

(chemicals such as plant growth regulators) while the latter includes light,

temperature, water, oxygen, nutrition, etc.

15.4 PLANT GROWTH REGULATORS

15.4.1 Characteristics

The plant growth regulators (PGRs) are small, simple molecules of diverse

chemical composition. They could be indole compounds (indole-3-acetic

acid, IAA); adenine derivatives (N6-furfurylamino purine, kinetin),

derivatives of carotenoids (abscisic acid, ABA); terpenes (gibberellic acid,

GA
3
) or gases (ethylene, C

2
H

4
). Plant growth regulators are variously

described as plant growth substances, plant hormones or phytohormones

in literature.

The PGRs can be broadly divided into two groups based on their

functions in a living plant body. One group of PGRs are involved in growth

promoting activities, such as cell division, cell enlargement, pattern

formation, tropic growth, flowering, fruiting and seed formation. These

are also called plant growth promoters, e.g., auxins, gibberellins and

cytokinins. The PGRs of the other group play an important role in plant

responses to wounds and stresses of biotic and abiotic origin. They are

also involved in various growth inhibiting activities such as dormancy

and abscission. The PGR abscisic acid belongs to this group. The gaseous

PGR, ethylene, could fit either of the groups, but it is largely an inhibitor

of growth activities.

15.4.2  The Discovery of Plant Growth Regulators

Interestingly, the discovery of each of the five

major groups of PGRs have been accidental.

All this started with the observation of Charles

Darwin and his son Francis Darwin when they

observed that the coleoptiles of canary grass

responded to unilateral illumination by

growing towards the light source

(phototropism). After a series of experiments,

it was concluded that the tip of coleoptile was

the site of transmittable influence that caused

the bending of the entire coleoptile (Figure

15.10). Auxin was isolated by F.W. Went from

tips of coleoptiles of oat seedlings.

Figure 15.10 Experiment used to demonstrate
that tip of the coleoptile is the
source of auxin. Arrows indicate
direction of light

a b c d
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The ‘bakanae’ (foolish seedling) disease of rice seedlings, was caused

by a fungal pathogen Gibberella fujikuroi. E. Kurosawa (1926) reported

the appearance of symptoms of the disease in rice seedlings when they

were treated with sterile filtrates of the fungus. The active substances

were later identified as gibberellic acid.

F. Skoog and his co-workers observed that from the internodal

segments of tobacco stems the callus (a mass of undifferentiated cells)

proliferated only if, in addition to auxins the nutrients medium was

supplemented with one of the following: extracts of vascular tissues, yeast

extract, coconut milk or DNA. Skoog and Miller, later identified and

crystallised the cytokinesis promoting active substance that they termed

kinetin.

During mid-1960s, three independent researches reported the

purification and chemical characterisation of three different kinds of

inhibitors: inhibitor-B, abscission II and dormin. Later all the three were

proved to be chemically identical. It was named abscisic acid (ABA).

Cousins confirmed the release of a volatile substance from ripened

oranges that hastened the ripening of stored unripened bananas. Later

this volatile substance was identified as ethylene, a gaseous PGR.

Let us study some of the physiological effects of these five categories

of PGRs in the next section.

15.4.3  Physiological Effects of Plant Growth Regulators

15.4.3.1 Auxins

Auxins (from Greek ‘auxein’ : to grow) was first isolated from human urine.

The term ‘auxin’ is applied to the indole-3-acetic acid (IAA), and to other

natural and synthetic compounds having certain growth regulating

properties. They are generally produced by the growing apices of the stems

and roots, from where they migrate to the regions of their action. Auxins

like IAA and indole butyric acid (IBA) have been isolated from plants.

NAA (naphthalene acetic acid) and 2, 4-D (2, 4-dichlorophenoxyacetic)

are synthetic auxins. All these auxins have been used extensively in

agricultural and horticultural practices.

They help to initiate rooting in stem cuttings, an application widely

used for plant propagation. Auxins promote flowering e.g. in pineapples.

They help to prevent fruit and leaf drop at early stages but promote the

abscission  of older mature leaves and fruits.

In most higher plants, the growing apical bud inhibits the growth of

the lateral (axillary) buds, a phenomenon called apical dominance.

Removal of shoot tips (decapitation) usually results in the growth of lateral

buds (Figure 15.11). It is widely applied in tea plantations, hedge-making.

Can you explain why?
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Auxins also induce parthenocarpy, e.g., in

tomatoes. They are widely used as herbicides.

2, 4-D, widely used to kill dicotyledonous

weeds, does not affect mature

monocotyledonous plants. It is used to prepare

weed-free lawns by gardeners. Auxin also

controls xylem differentiation and helps in cell

division.

15.4.3.2 Gibberellins

Gibberellins are another kind of promotory

PGR. There are more than 100 gibberellins

reported from widely different organisms such

as fungi and higher plants. They are denoted

as GA
1
, GA

2
, GA

3
 and so on. However,

Gibberellic acid (GA
3
) was one of the first

gibberellins to be discovered and remains the

most intensively studied form. All GAs are

acidic. They produce a wide range of

physiological responses in the plants. Their ability to cause an increase

in length of axis is used to increase the length of grapes stalks. Gibberellins,

cause fruits like apple to elongate and improve its shape. They also delay

senescence. Thus, the fruits can be left on the tree longer so as to extend

the market period. GA
3
 is used to speed up the malting process in brewing

industry.

Sugarcane stores carbohydrate as sugar in their stems. Spraying

sugarcane crop with gibberellins increases the length of the stem, thus

increasing the yield by as much as 20 tonnes per acre.

Spraying juvenile conifers with GAs hastens the maturity period, thus

leading to early seed production. Gibberellins also promotes bolting

(internode elongation just prior to flowering) in beet, cabbages and many

plants with rosette habit.

15.4.3.3 Cytokinins

Cytokinins have specific effects on cytokinesis, and were discovered as

kinetin (a modified form of adenine, a purine) from the autoclaved herring

sperm DNA. Kinetin does not occur naturally in plants. Search for natural

substances with cytokinin-like activities led to the isolation of zeatin from

corn-kernels and coconut milk. Since the discovery of zeatin, several

naturally occurring cytokinins, and some synthetic compounds with cell

division promoting activity, have been identified. Natural cytokinins are

synthesised in regions where rapid cell division occurs, for example, root

apices, developing shoot buds, young fruits etc. It helps to produce new

Figure 15.11 Apical dominance in plants :
(a) A plant with apical bud intact
(b) A plant with apical bud removed

Note the growth of lateral buds into
branches after decapitation.

(a) (b)
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leaves, chloroplasts in leaves, lateral shoot growth and adventitious shoot

formation. Cytokinins help overcome the apical dominance. They promote

nutrient mobilisation which helps in the delay of leaf senescence.

15.4.3.4 Ethylene

Ethylene is a simple gaseous PGR. It is synthesised in large amounts by

tissues undergoing senescence and ripening fruits. Influences of ethylene

on plants include horizontal growth of seedlings, swelling of the axis and

apical hook formation in dicot seedlings. Ethylene promotes senescence

and abscission of plant organs especially of leaves and flowers. Ethylene

is highly effective in fruit ripening. It enhances the respiration rate during

ripening of the fruits. This rise in rate of respiration is called respiratory

climactic.

Ethylene breaks seed and bud dormancy, initiates germination in

peanut seeds, sprouting of potato tubers. Ethylene promotes rapid

internode/petiole elongation in deep water rice plants. It helps leaves/

upper parts of the shoot to remain above water. Ethylene also promotes

root growth and root hair formation, thus helping the plants to increase

their absorption surface.

Ethylene is used to initiate flowering and for synchronising fruit-set

in pineapples. It also induces flowering in mango. Since ethylene regulates

so many physiological processes, it is one of the most widely used PGR in

agriculture. The most widely used compound as source of ethylene is

ethephon. Ethephon in an aqueous solution is readily absorbed and

transported within the plant and releases ethylene slowly. Ethephon

hastens fruit ripening in tomatoes and apples and accelerates abscission

in flowers and fruits (thinning of cotton, cherry, walnut). It promotes female

flowers in cucumbers thereby increasing the yield.

15.4.3.5 Abscisic acid

As mentioned earlier, abscisic acid (ABA) was discovered for its role in

regulating abscission and dormancy. But like other PGRs, it also has

other wide ranging effects on plant growth and development. It acts as a

general plant growth inhibitor and an inhibitor of plant metabolism. ABA

inhibits seed germination. ABA stimulates the closure of stomata in the

epidermis and increases the tolerance of plants to various kinds of stresses.

Therefore, it is also called the stress hormone. ABA plays an important

role in seed development, maturation and dormancy. By inducing

dormancy, ABA helps seeds to withstand desiccation and other factors

unfavourable for growth. In most situations, ABA acts as an antagonist

to GAs.

We may summarise that for any and every phase of growth,

differentiation and development of plants, one or the other PGR has some

role to play. Such roles could be complimentary or antagonistic. These

could be individualistic or synergistic.
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Similarly, there are a number of events in the life of a plant where

more than one PGR interact to affect that event, e.g., dormancy in seeds/

buds, abscission, senescence, apical dominance, etc.

Remember, the role of PGR is of only one kind of intrinsic control.

Along with genomic control and extrinsic factors, they play an important

role in plant growth and development. Many of the extrinsic factors such

as temperature and light, control plant growth and development via PGR.

Some of such events could be: vernalisation, flowering, dormancy, seed

germination, plant movements, etc.

We shall discuss briefly the role of light and temperature (both of them,

the extrinsic factors) on initiation of flowering.

15.5 PHOTOPERIODISM

It has been observed that some plants require a periodic exposure to

light to induce flowering. It is also seen that such plants are able to

measure the duration of exposure to light. For example, some plants

require the exposure to light for a period exceeding a well defined critical

duration, while others must be exposed to light for a period less than this

critical duration before the flowering is initiated in them. The former group

of plants are called long day plants while the latter ones are termed

short day plants. The critical duration is different for different plants.

There are many plants, however, where there is no such correlation

between exposure to light duration and induction of flowering response;

such plants are called day-neutral plants (Figure 15.12). It is now also

Figure 15.12  Photoperiodism : Long day, short day and day neutral plants

Long day plant Short day plant Day neutral plant
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known that not only the duration of light period but that the duration of

dark period is also of equal importance. Hence, it can be said that flowering

in certain plants depends not only on a combination of light and dark

exposures but also their relative durations. This response of plants to

periods of day/night is termed photoperiodism. It is also interesting to

note that while shoot apices modify themselves into flowering apices prior

to flowering, they (i.e., shoot apices of plants) by themselves cannot percieve

photoperiods. The site of perception of light/dark duration are the leaves.

It has been hypothesised that there is a hormonal substance(s) that is

responsible for flowering. This hormonal substance migrates from leaves

to shoot apices for inducing flowering only when the plants are exposed

to the necessary inductive photoperiod.

15.6 VERNALISATION

There are plants for which flowering is either quantitatively or qualitatively

dependent on exposure to low temperature. This phenomenon is termed

vernalisation. It prevents precocious reproductive development late in

the growing season, and enables the plant to have sufficient time to reach

maturity. Vernalisation refers specially to the promotion of flowering by a

period of low temperature. Some important food plants, wheat, barley,

rye have two kinds of varieties: winter and spring varieties. The ‘spring’

variety are normally planted in the spring and come to flower and produce

grain before the end of the growing season. Winter varieties, however, if

planted in spring would normally fail to flower or produce mature grain

within a span of a flowering season. Hence, they are planted in autumn.

They germinate, and over winter come out as small seedlings, resume

growth in the spring, and are harvested usually around mid-summer.

Another example of vernalisation is seen in biennial plants. Biennials

are monocarpic plants that normally flower and die in the second season.

Sugarbeet, cabbages, carrots are some of the common biennials.

Subjecting the growing of a biennial plant to a cold treatment stimulates

a subsequent photoperiodic flowering response.

15.7 SEED DORMANCY

There are certain seeds which fail to germinate even when external

conditions are favourable. Such seeds are understood to be undergoing

a period of dormancy which is controlled not by external environment

but are under endogenous control or conditions within the seed itself.

Impermeable and hard seed coat; presence of chemical inhibitors such

as abscissic acids, phenolic acids, para-ascorbic acid; and immature
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embryos are some of the reasons which causes seed dormancy. This dormancy

however can be overcome through natural means and various other man-made

measures. For example, the seed coat barrier in some seeds can be broken by

mechanical abrasions using knives, sandpaper, etc. or vigorous shaking. In nature,

these abrasions are caused by microbial action, and passage through digestive

tract of animals. Effect of inhibitory substances can be removed by subjecting the

seeds to chilling conditions or by application of certain chemicals like gibberellic

acid and nitrates. Changing the environmental conditions, such as light and

temperature are other methods to overcome seed dormancy.

SUMMARY

Growth is one of the most conspicuous events in any living organism. It is an

irreversible increase expressed in parameters such as size, area, length, height,

volume, cell number etc. It conspicuously involves increased protoplasmic material.

In plants, meristems are the sites of growth. Root and shoot apical meristems

sometimes alongwith intercalary meristem, contribute to the elongation growth of

plant axes. Growth is indeterminate in higher plants. Following cell division in root

and shoot apical meristem cells, the growth could be arithmetic or geometrical.

Growth may not be and generally is not sustained at a high rate throughout the life

of cell/tissue/organ/organism. One can define three principle phases of growth –

the lag, the log and the senescent phase. When a cell loses the capacity to divide, it

leads to differentiation. Differentiation results in development of structures that is

commensurate with the function the cells finally has to perform. General principles

for differentiation for cell, tissues and organs are similar. A differentiated cell may

dedifferentiate and then redifferentiate. Since differentiation in plants is open, the

development could also be flexible, i.e., the development is the sum of growth and

differentiation. Plant exhibit plasticity in development.

Plant growth and development are under the control of both intrinsic and

extrinsic factors. Intercellular intrinsic factors are the chemical substances, called

plant growth regulators (PGR). There are diverse groups of PGRs in plants, principally

belonging to five groups: auxins, gibberellins, cytokinins, abscisic acid and ethylene.

These PGRs are synthesised in various parts of the plant; they control different

differentiation and developmental events. Any PGR has diverse physiological effects

on plants. Diverse PGRs also manifest similar effects. PGRs may act synergistically

or antagonistically. Plant growth and development is also affected by light,

temperature, nutrition, oxygen status, gravity and such external factors.

Flowering in some plants is induced only when exposed to certain duration of

photoperiod. Depending on the nature of photoperiod requirements, the plants are

called short day plants, long day plants and day-neutral plants. Certain plants

also need to be exposed to low temperature so as to hasten flowering later in life.

This treatement is known as vernalisation.
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EXERCISES

1. Define growth, differentiation, development, dedifferentiation, redifferentiation,

determinate growth, meristem and growth rate.

2. Why is not any one parameter good enough to demonstrate growth throughout

the life of a flowering plant?

3. Describe briefly:

(a) Arithmetic growth

(b) Geometric growth

(c) Sigmoid growth curve

(d) Absolute and relative growth rates

4. List five main groups of natural plant growth regulators. Write a note on

discovery, physiological functions and agricultural/horticultural applications

of any one of them.

5. What do you understand by photoperiodism and vernalisation? Describe their

significance.

6. Why is abscisic acid also known as stress hormone?

7. ‘Both growth and differentiation in higher plants are open’. Comment.

8. ‘Both a short day plant and a long day plant can produce can flower

simultaneously in a given place’. Explain.

9. Which one of the plant growth regulators would you use if you are asked to:

(a) induce rooting in a twig

(b) quickly ripen a fruit

(c) delay leaf senescence

(d) induce growth in axillary buds

(e) ‘bolt’ a rosette plant

(f) induce immediate stomatal closure in leaves.

10. Would a defoliated plant respond to photoperiodic cycle? Why?

11. What would be expected to happen if:

(a) GA
3
 is applied to rice seedlings

(b) dividing cells stop differentiating

(c) a rotten fruit gets mixed with unripe fruits

(d) you forget to add cytokinin to the culture medium.
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