SSLC Examination March 2020 Mathematics

English Version Questions and Detailed

 Solutions.
Prepared by Dr.V.S. Raveendranath

Question 1.

(a) Write the $6^{\text {th }}$ term of the arithmetic sequence $1,25,49,73,97, \ldots$.
(b) How many perfect square terms are there in the arithmetic sequence $97,73,49$, ?

Solution.

(a) Given arithmetic sequence 1,25,49,73,97,.............
First term (f) = 1; d=25-1=24. $6^{\text {th }}$ term $=\mathrm{f}+5 \mathrm{~d} ; \Rightarrow \mathbf{1 + 5 \times 2 4}$

$$
1+120=121 .
$$

(b) Given arithmetic sequence 97,73,49,
We know that the perfect square numbers be $1,4,9,16, \ldots \ldots . . .$. $\mathbf{2 5 , 1}$. From this perfect square

numbers are 49,25, and 1.

\therefore Number of perfect square term $=3$.

..

Question 2.

Chords AB and CD are intersecting at $\mathrm{P} . \mathrm{AB}=10$ centimetres, $\mathrm{PB}=4$ centimetres and $\mathrm{PD}=3$ centimetres.

(a) What is the length of PA ?
(b) Find the length of PC.

Solution .

Given, $\mathrm{AB}=10 \mathrm{~cm} ; \mathrm{PB}=\mathbf{4 c m}$;
PD $=3 \mathrm{~cm}$.
(a) $P A=A B-P B=10-4=6 \mathrm{~cm}$.
(b) We know that PC \times PD $=\mathbf{P A} \times$ PB

$$
\mathrm{PC}=\frac{\mathrm{PA} \times \mathrm{PB}}{P D}=\frac{6 \times 4}{3} .=8 \mathrm{~cm} .
$$

..

Question 3.

Write the polynomial $\mathrm{p}(x)=x^{2}-4$ as the product of two first degree polynomials.

Solution

Given polynomial $=\mathbf{p}(\mathbf{x})=x^{2}-4$
First degree polynomial $x^{2}-4$

$$
=(x+2)(x-2)
$$

.drvsr

Question 4.

In the figure, O is the centre of the circle and $x^{2}+y^{2}=25$ is the equation of the circle.

(a) What is the radius of the circle?
(b) Write the equation of the circle whose centre is at the origin and radius is 3.

Solution

Given circle - $x^{2}+y^{2}=25$.
(a) We know $x^{2}+y^{2}=r^{2}$ ie., $\mathbf{r}^{2}=\mathbf{2 5}$;
$r=\sqrt{25}=5 . \quad \therefore r=5$.
(b) Given radius $=3$

Hence the equation of the circle $=$
$x^{2}+y^{2}=r^{2} \Rightarrow x^{2}+y^{2}=3^{2}$.

$$
\Rightarrow x^{2}+y^{2}=9
$$

Question 5.

1) Write the first term and the common difference of the arithmetic sequence whose algebraic expression is $3 n+5$.
) First term of an arithmetic sequence is 8 and the common difference is 5 . Write its algebraic form.

Solution

Given $\mathrm{x}_{\mathrm{n}}=3 \mathrm{n}+5$.
(a)Put $\mathrm{n}=1$ get first term
ie., first term $=3 \times 1+5=3+8=8$
common difference $=3$ [\because coefficient of \boldsymbol{n} be the d]
(b) Given $\mathrm{f}=8$; d=5

We know $\left.\mathrm{x}_{\mathrm{n}}=\mathbf{d n}+\mathrm{f}-\mathrm{d}\right)=\mathbf{5 n}+(8-5)$

$$
=5 n+3
$$

.. ${ }^{\text {drvsr }}$
Question 6.
I the figure, $\angle \mathrm{ABC}=90^{\circ}, \angle \mathrm{C}=\angle \mathrm{D}=45^{\circ}, \mathrm{AB}=10$ centimetres.

1) What is the length of AC ?
2) What is the radius of the circumcircle of triangle $A B C$?
) What is the radius of the circumcircle of triangle $A B D$?
Solution
In right $\triangle \mathrm{ABC}$,
$45^{0}, 45^{\circ}, 90^{0}$
$\Rightarrow 1: 1: \sqrt{2}$
$\Rightarrow \mathrm{AB}: \mathrm{BC}: \mathrm{AC}$

$10 \quad 10 \quad 10 \sqrt{2}$

(a) The length of $\mathrm{AC}=10 \sqrt{2}$
(b) Radius of the circumcircle of $\triangle \mathrm{ABC}$
$=$ Half of the hypotenuses $A C=\frac{10 \sqrt{2}}{2}$ $=5 \sqrt{2}$.
(c) Radius of the circumcircle of $\triangle \mathrm{ABD}$
$=$ Half of the hypotenuses $\mathbf{A C}=\frac{10 \sqrt{2}}{2}$

$$
=5 \sqrt{2}
$$

...drvsr

Question7.
Draw a circle radius 3 cm . Mark a point P at a distance $\mathbf{6 c m}$ from the center of the circle. Draw tangents from P to the circle.

Solution

...drvsr

Question 8

1) What is the common difference of the arithmetic sequence $x-1, x, x+1$, \qquad ?
2) If $x-1$ is an even number, which is the next even number ?
3) Prove that the product of two consecutive even numbers added to 1 gives a perfect square.

Solution

(a) Given sequence $x-1, x, x+1$,

$$
d=x-(x-1)=x-x+1=1 .
$$

(b) Given even number $=x-1$

Next even number $=x-1+2=x+1$.
(c) Let consecutive two even number be $(x-1)$ and ($x+1$)
By question, the product of two consecutive numbers + 1
ie., $(x-1)(x+1) 1=x^{1}-1+1=x^{2}$.
Here x^{2} being a perfect square. Hence proved.

Question 9

I the figure, ABCD is a square. Its diagonals are parallel to the coordinate axes. $\mathrm{AC}=6$ and te coordinates of A is $(3,2)$ write the coordinates of the vertices C, B and D .

Solution

Given , coordinates of $A=(3,2)$
$A C$ be parallel to to the x-axis
\therefore the coordinates of C

$$
=(3+6,2)=(9,2)
$$

coordinates of the mid point of AC

$$
=(6,2)
$$

We know that the diagonals are equal in a square.
\therefore the coordinates of $B=(6,2-3)$
$=(6,-1)$ coordinates of D

$$
=(6,2+3)=(6,5)
$$

Hence the coordinates of $A=(3,2)$
Coordinates of B = $(6,-1)$
Coordinates of $\mathbf{C}=(9,2)$
Coordinates of $\mathbf{D}=(6,5)$.
..drvsr
Question 10.
In the figure, ABCD is a cyclic quadrilateral. Also $\angle \mathrm{A}+\angle \mathrm{D}=210^{\circ}, \angle \mathrm{D}+\angle \mathrm{C}=250^{\circ}$

(a) What is $\angle A+\angle C$?
(b) Find the measures of $\angle \mathrm{A}$ and $\angle \mathrm{C}$.

Solution

Given $\angle \mathrm{A}+\angle \mathrm{D}=210^{\circ}$ $\angle \mathrm{D}+\angle \mathrm{C}=250^{\circ}$.

(a) $\angle A+\angle C=180^{\circ}$

(cyclic quadrilateral)

$\angle A+\angle D=210 \rightarrow(1)$
$\angle D+\angle C=250 \rightarrow(2)$
Adding (1) + (2)
$\Rightarrow \angle A+\angle C+2 \angle D=460$
$\Rightarrow 180+2 \angle D=460$
$\Rightarrow 2 \angle D=280$
$\angle D=140^{\circ}$.
(b) $\angle A=210-140=70^{\circ}$.
.drvsr

Question 11.

The figure of a square sheet of paper is shown below. Length of one side of the paper sheet is 36 centimetres and $\mathrm{AB}=10$ centimetres. The shaded portion is cut out and folded into a square pyramid.
(a) What is the length of the base edge of the pyramid ?
(b) What is the slant height of the pyramid?
(c) Find the lateral surface area of the pyramid.

Solution

Given, Side of the paper sheet $=36 \mathrm{~cm}^{2}$.

$A B=10 \mathrm{~cm}$.

(a) Base edge of the pyramid $A B=10 \mathrm{~cm}$.

(b) Slant height of the pyramid

 $\frac{36-10}{2}=26 / 2=13 \mathrm{~cm}$.$[\because a+2 l=36$, side of the larger

square]

(c) Lateral surface area $=2 \mathrm{al}$

$$
=2 \times 10 \times 13=260 \mathrm{~cm}^{2} .
$$

...drvsr

Question 12.

(a) What is the sum of the first 5 terms of the arithmetic sequence $1,3,5,7, \ldots \ldots . . .$. ?
(b) What is the sum of the first n terms of the arithmetic sequence $1,3,5,7, \ldots$. ?
(c) Find the sum of the first n terms of the arithmetic sequence $\frac{1}{n}, \frac{3}{n}, \frac{5}{n}, \frac{7}{n}$,
(d) What is the sum of first 2020 terms of the arithmetic sequence $\frac{1}{2020}, \frac{3}{2020}, \frac{5}{2020}, \ldots ?$

Solution

(a) Given sequence $=1,3,5,7, \ldots \ldots$ We know sum $=\mathrm{n}^{2}, \mathrm{n}=5$
\therefore sum of the first 5 terms $=5^{2}=25$.
(b) sum of the first n terms $=n^{2}$.
(c) Given sequence $=\frac{1}{n}, \frac{3}{n}, \frac{5}{n}, \frac{7}{n}$. --We know, sum of the first \boldsymbol{n} terms

$$
=\frac{n^{2}}{n}=n .
$$

(d) Given sequence
$\frac{1}{2020}, \frac{3}{2020}, \frac{5}{2020}------$
We know, sum of the first n terms

$$
=\frac{n^{2}}{n}=n
$$

ie., , sum of the first 2020 terms

$$
\text { = n = } 2020 .
$$

...drvsr

Question 13

Draw a rectangle of length 4 centimetres and breadth 2 centimetres. Draw a square having the same area of the rectangle.

Solution

Contraction.
Contract rectangle ABCD in the given measurement. Extant the line $A B$ to $B E$, such that $B E=B C$. Draw a semi circle $A E$ as diameter and draw a parallel line BF through B and then BF as length then draw the square BFGH.
...drvsr

Question 14.

In a school, the total number of students in 10 A division is equal to the total number of students in 10 B . One student is to be selected from each division. Number of boys in 10 A is 20 . The probability of selecting a boy from 10 A is $\frac{2}{5}$ and that of from 10 B is $\frac{3}{5}$.
(a) How many students are there in 10 A ?
(b) What is the probability of selecting a girl from 10 A ?
(c) How many boys are there in 10 B ?
(d) What is the probability of both the selected students being boys?

Solution

	Class XA	Class XB
Boys	20	30
Girls	30	20
Total	50	50

Given probability of boys in $X A=\frac{2}{5}$ Given probability of boys in $X B=\frac{3}{5}$ (a) Number of boys in XA

$$
=20 \times \frac{5}{2}=50
$$

(b) Probability of girl from XA

$$
=1-\frac{2}{5}=\frac{5-2}{5}=\frac{3}{5}
$$

(c) Number of boys in X B

$$
=50 \times \frac{3}{5}=10 \times 3=30
$$

(d) Both being boys $=\frac{2}{5} \times \frac{3}{5}=\frac{6}{25}$...drvsr

Question 15.

Perimeter of the rectangle in the figure is 36 centimetres. $\mathrm{AC}=\sqrt{164}$ centimetres.

(a) What is $\mathrm{AB}+\mathrm{BC}$?
(b) Find the length of $A B$.

Solution

Given the perimeter $=36 \mathrm{~cm}$.
AC $=\sqrt{164} \mathrm{~cm}$.
(a) ie., $\mathbf{2 (1 + b) = 3 6}$
$\therefore A B+B C=\frac{36}{2}=18 \mathrm{~cm}$.
(b) Let $A B=x, B C=18-x$ In right, $\triangle A B C$ by Pythagoras
$A C^{2}=A B^{2}+B C^{2}$.
le $164=x^{2}+(18-x)^{2}$.
$x^{2}+324-36 x+x^{2}=164$
$2 x^{2}-36 x=164-324=-160$
dividing by 2
$x^{2}-18 x=-80$ [square completion method]
$x^{2}-18 x+81=-80+81$
ie $(x-9)^{2}=1$
$x-9= \pm 1$
$x-9=1$ or $x-9=-1$
$x=10$ or $=8 ; A B=10 \mathrm{~cm}$
..drvsr

Question 16

In triangle $\mathrm{ABC}, \angle \mathrm{A}=\angle \mathrm{B}=30^{\circ}, \mathrm{AC}=4$ centimetres.

(a) What is the length of $B C$?
(b) Find the length of $A B$.
(c) In triangle $\mathrm{PQR}, \mathrm{PQ}=4 \sqrt{3}$ centimetres, $\angle \mathrm{P}=\angle \mathrm{Q}=30^{\circ}$. Draw the triangle.

Solution
 Given,
 $\angle A=\angle B=30^{\circ}$.
 $A C=4 \mathrm{~cm}$
 Draw CD $\perp \mathrm{AB}$.
 In right $\triangle A D C$, $30^{\circ}: 60^{\circ}: 90^{\circ}$
 $1: \sqrt{ } 3: 2$

DC: AD : AC
$\downarrow \quad \downarrow \downarrow$
$x \quad: x \sqrt{ } 3: 2 x$
$\downarrow \quad \downarrow \downarrow$
$2: 2 \sqrt{ } 3: 4$
$\mathrm{DC}=2 ; \mathrm{AD}=2 \sqrt{ } 3 ; \quad \mathrm{AC}=4$
(a) Length of $\mathrm{BC}=\mathrm{AC}=4 \mathrm{~cm}$
(b) Length of $A B=A D+D B$

$$
=2 \sqrt{ } 3+2 \sqrt{ } 3=4 \sqrt{ } 3 \mathrm{~cm}
$$

(c)

Draw
$P R=4 \mathrm{~cm}$ and make $\angle R$ be
120° and Joint PQ .
\triangle PRQ be the
 required triangle.
..drvsr

Question 17.

(a) If $\mathrm{p}(x)=x^{2}-7 x+13$, What is $\mathrm{p}(3)$?
(b) Write the polynomial $\mathrm{p}(x)-\mathrm{p}(3)$ as the product of two first degree polynomials.
(c) Find the solutions of the equation $\mathrm{p}(x)-\mathrm{p}(3)=0$.

Solution

(a) Given polynomial

$$
\begin{aligned}
\mathbf{p}(\mathbf{x}) & =x^{2}-7 x+13 \\
\mathbf{p}(\mathbf{3}) & =3^{2}-7 \times 3+13 \\
& =9-21+13=1 .
\end{aligned}
$$

(b) $\mathbf{p}(\mathbf{x})-\mathbf{p}(3)=x^{2}-7 x+13-1$

$$
=x^{2}-7 x+12=(x-3)(x-4)
$$

Hence the product two first degree polynomial $=(x-3)(x-4)$.
(c) $p(x)-p(3)=0$
ie., $x^{2}-7 x+12=0$
$\Rightarrow(x-3)(x-4)=0$
$\Rightarrow(x-3)=0$ or $(x-4)=0$
ie., $x=3$ or $x=4$.
Hence the solution $x=3$ and 4 . ..drvsr

Question 18.

In the figure, O is the centre of both the circles. AB and AC touch the small circle at P and Q . A, B and C are points on the large circle.

(a) If $\mathrm{AP}=5$ centimetres, then what is the length of AQ ?
(b) Prove that $\mathrm{AB}=\mathrm{AC}$.
(c) If $\mathrm{AP}=5$ centimetres and $\angle \mathrm{A}=90^{\circ}$, then what is the radius of the small circle ?

Solution

(a) Given AP = 5 cm

Hence the length of $A Q=5 \mathrm{~cm}$. [\because Same tangents from A]
(b) AB and AC are tangents
$O P \perp A B$ and $O Q \perp A C$.
[\because Chord bisector theorem]
$A P=B P$ and $A Q=Q C$
ie., $A B=A C$. Hence proved.

(c) Given $\angle A=90^{\circ}$, So we can see

 that APOQ be a square.[$\because \mathrm{OP}$ and OQ be radii $\therefore \angle A P O=$
$\angle A Q O=90^{\circ}$. ie., $\left.\angle P O Q=90^{\circ}\right]$
Hence radius of the small circle $=5 \mathrm{~cm}$.
...drvsr
Question 19.
Draw the coordinate axes and mark the points $\mathrm{A}(-3,0), \mathrm{B}(3,0)$ and $\mathrm{C}(0,3 \sqrt{3})$.

Solution

Question 20.

A sector of radius 12 centimetres and central angle 120° is rolled up into a cone.
(a) What is the slant height of the cone ?
(b) Find the radius and the height of the cone.
(c) What is the central angle of the sector to be used to make a cone of base radius $\sqrt{2}$ centimetres and height 4 centimetres ?

Solution

(a) Radius of the sector $=12 \mathrm{~cm}$

 [We know that radius of the sector be the slant height of the cone](b) We know $\frac{r}{l}=\frac{x^{0}}{360} \Rightarrow \frac{r}{12}=\frac{120}{360}$
$\Rightarrow \mathbf{3 6 0 r}=12 \times 120 \Rightarrow \mathbf{r}=\frac{12 \times 120}{360}$

$\therefore \mathrm{r}=4 \mathrm{~cm}$. Radius $=4 \mathrm{~cm}$

$$
\begin{aligned}
\mathbf{h} & =\sqrt{l^{2}-r^{2}}=\sqrt{12^{2}-4^{2}}=\sqrt{144-16} \\
& =\sqrt{128}=8 \sqrt{2} . \mathrm{cm} .
\end{aligned}
$$

(c) We know that $\frac{r}{l}=\frac{x^{0}}{360}$

Center angle ($\mathbf{x}^{\mathbf{0}} \mathbf{)}=\frac{360 \times r}{l}$. find ${ }^{\prime} \mathbf{l}$ '
$l=\sqrt{h^{2}+r^{2}}$ given $r=\sqrt{2}, h=\mathbf{4} \mathbf{c m}$.
$\therefore \mathbf{l}=\sqrt{4^{2}+\sqrt{2^{2}}}=\sqrt{16+2}=\sqrt{18}=3 \sqrt{ } 2$.
\therefore Center angle ($\mathbf{x}^{\mathbf{0}}$) $=\frac{360 \times r}{l}$

$$
=\frac{360 \times \sqrt{2}}{3 \sqrt{2}}=120^{\circ}
$$

Question21.

(a) What is the slope of the line passing through the points $(5,0)$ and $(3,2)$? Write the equation of the line.
(b) The x coordinate of a point on the line $x-y=5$ is 5 . What is the y coordinate of that point?
(c) Write the coordinates of the point of intersection of the lines $x+y=5$ and $x-y=5$.

Solution

(a) Given points $(5,0)$ and $(3,2)$

Slope $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{2-0}{3-5}=\frac{2}{-2}=-1$.
Equation of the line $=$

$$
\begin{aligned}
& =y-y_{1}=m\left(x-x_{1}\right) \\
& =y-0=-1(x-5)
\end{aligned}
$$

$$
y=-x+5 \text { ie., } x+y-5=0 \text { be the }
$$

equation.
(b) If $x=5$; ie., $5-y=5$; $-y=5-5=0$.
y coordinates $=0$.
(c) Given $x+y=5$ and $x-y=0$.

Intersection of the line, to solve the equation.
ie., $x+y=5 \rightarrow(1) ; x-y=0 \rightarrow(2)$
solve (1) and (2) we get
x and $y=5$, and 0
So the coordinates $=(5,0)$.
...drvsr
Question 22.
Sum of the first 4 terms of an arithmetic sequence is 72 . Sum of the first 9 terms is also 72 .
(a) What is the $5^{\text {th }}$ term of the sequence?
(b) Find the sum of the first five terms.
(c) Write the sequence.

Solution

Given sum of the first 4 term = 72.
sum of the first 9 term $=72$.
(a) $5^{\text {th }} \operatorname{term}\left(s_{5}\right)=\frac{72}{9}=8$.
(b) Sum of the first 5 term (s_{5})

$$
=s_{4}+x_{5}=72+8=80 .
$$

(c) $X_{3}=80 / 5=16$
$X_{3}+2 d=X_{5}$
$16+2 d=8$
$2 d=-8$
d $=-4$
$X_{1}=X_{3}-2 d=16-2 \times-4=24$
Sequence $=24,20,16,12,8, \ldots .$.
.drvsr

Question 23.

'A boy standing at the edge of a canal sees the top of a tree on the other edge at an elevation of 60°. Stepping 12 metres back, he sees it at an elevation of 30°. Find the height of the tree.

Solution

Let AB be the height of the tree.
B be the first position of the boy
C be the second position of the boy.
$B C=12 ; \angle C=30^{\circ} ; \angle B P A=60^{\circ}$;
$\angle \mathrm{PBA}=30^{\circ} ; \angle \mathrm{A}=\mathbf{9 0}^{\circ}$. [see the figure]
We can see that $\triangle C B D$ be an isosceles.
$\therefore B C=B D=12$.
From right $\triangle B A P, \mathbf{3 0}^{\mathbf{0}} ; \mathbf{6 0}^{\mathbf{0}} \boldsymbol{; 9 0 ^ { 0 }}$.

$$
\begin{array}{lcl}
\text { ie., } & 1: \sqrt{ } 3: 2 \\
\Rightarrow & A D: A B: B D
\end{array}
$$

$$
\begin{array}{cccc}
& \downarrow & \downarrow & \downarrow \\
\Rightarrow & x & : x \sqrt{ } 3: 2 x \\
& \downarrow & \downarrow \\
\Rightarrow & 6 & : & 6 \sqrt{ } 3: 12 .
\end{array}
$$

$$
\therefore A B=6 \sqrt{ } 3
$$

Hence the height of the tree

$$
=6 \sqrt{ } 3 \mathrm{~m}
$$

OR.............drvsr

Another method by using tan

 formula to find the height$$
\begin{aligned}
\mathbf{h} & =\frac{\operatorname{atan} A \cdot \tan B}{\tan A-\tan B} \\
& =\frac{12 \tan 30^{\circ} \cdot \tan 60^{\circ}}{\tan 30^{\circ}+\tan 60^{\circ}} \\
& =\frac{12 \times \sqrt{3} \cdot \frac{1}{\sqrt{3}}}{\sqrt{3}-\frac{1}{\sqrt{3}}}=\frac{12}{3-\frac{1}{\sqrt{3}}}=\frac{12}{\frac{2}{\sqrt{3}}} \\
& =\frac{12 \sqrt{3}}{2}=6 \sqrt{3} \mathrm{~m} .
\end{aligned}
$$

Hence the height $=6 \sqrt{ } 3 \mathrm{~m}$.drvsr

Question 24

In $\triangle A B C, A B=5$ centimetres, $\angle A=65^{\circ}, \angle B=55^{\circ}$. Draw the triangle $A B C$ and draw the incircle. Measure the radius of the incircle.

Solution

Radius
 $=1.4 \mathrm{~cm}$.

.drvsr

Question25

A circle is drawn with $(5,3)$ as centre. $(5,6)$ is a point on the circle.
(a) What is the radius of the circle?
(b) Write the equation of the circle.
(c) What is the distance from the centre of the circle to the x-axis ?
(d)) What is the length of the tangents from the origin to the circle?

Solution

(a) Radius of the circle $=6-3=3$.
(b) Equation of the circle
$=(x-a)^{2}+(y-b)^{2}=r^{2}$
$=(x-5)^{2}+(y-3)^{2}=3^{2}$
$=x^{2}-10 x+25+y^{2}-6 y+9=9$
$=x^{2}+y^{2}-10 x-6 y+25=0$
(c) Distance $=$ radius of the circle $=3$ unit
(d) Length of the tangent $=5$ unit [We know that x-axis be itself as the tangent]

Question 26.

(a) The radius of a solid sphere is 6 centimetres. Find its volume and surface area.
(b) It is cut into two equal halves. What is the total surface area of each hemisphere ? What is the volume of a hemisphere?

Solution

(a) Given radius $=6 \mathrm{~cm}$;

Volume $=\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi 6^{3}=288 \pi \mathrm{~cm}^{3}$.
$\mathrm{TSA}=4 \pi \mathrm{rr}^{2}=4 \pi \times 6^{2}=144 \pi \mathrm{~cm}^{2}$.
(b) TSA of hemisphere $=3 \pi r^{2}$
$=3 \pi \times 6^{2}=108 \pi \mathrm{~cm}^{2}$.
Volume of hemisphere $=\frac{2}{3} \pi r^{3}$
$=\frac{2}{3} \pi 6^{3}=144 \pi \mathrm{~cm}^{3}$.
Question 27
The table below shows, children of a class sorted according to their marks in an examination

Marks	Number of Children
$0-10$	4
$10-20$	7
$20-30$	10
$30-40$	12
$40-50$	8
	41

(a) If we arrange the children from the one with the least mark to the one with the greatest, then what will be the assumed mark of the $12^{\text {th }}$ student?
(b) Compute the median mark.

Solution

Class	Frequency	Marks	cf
$0-10$	4	<10	4
$10-20$	7	<20	11 F
$20-30$	10 f	<30	$21 \mathrm{~N} / 2$
$30-40$	12	<40	33
$40-50$	8	<50	41
Total	41		

(a) Assumed mark of the $12^{\text {th }}$ student $=20+\frac{30-20}{10 \times 2}=20+\frac{1}{2}=20.5$.
(b) $\frac{\mathrm{N}}{2}=\frac{41}{2}=20.5$,

Median class $=20-30$
$\mathrm{l}=20 ; \quad \mathrm{F}=11 ; \mathrm{f}=10$
Median $=l+\left(\frac{\frac{\mathrm{N}}{2}-\mathrm{F}}{f}\right) c$

$$
\begin{aligned}
& =20+\frac{20.5-11}{10} \times 10 \\
& =20+\frac{9.5}{10} \times 10=20+9.5=29.5
\end{aligned}
$$

\therefore Median mark $=29.5$
..

Question 28

In the figure, O is the centre of the large circle. Centre of the small circle is $\mathrm{C} . \mathrm{OP}$ is a tangent to the small circle. $\angle \mathrm{BOQ}=50^{\circ}$.

(a) $\angle \mathrm{OAQ}=\ldots$.
(b) $\angle \mathrm{OCP}=\ldots$.
(c) $\angle \mathrm{APO}=\ldots$.
(d) $\angle \mathrm{POQ}=$

Solution

Given $\angle \mathrm{BOQ}=50^{\circ}$.

(a) In $\triangle A O Q$ be an isosceles, so their
base angles are equal
$\angle A O Q=180-50=130$
ie., $\angle \mathbf{A}=\angle \mathbf{Q}=\frac{180-130}{2}=\frac{50}{2}=25^{\circ}$.
$\therefore \angle \mathrm{OAQ}=25^{\circ}$.
(b) $\angle O C P=25^{\circ} \times 2=50^{\circ}$.
(c) $\angle \mathrm{APO}=25^{\circ}+90=115^{\circ}$.
(d) $\angle P O Q=180^{\circ}-(50+\angle A O P)$

$$
=180-50-40=90^{\circ} .
$$

.drvsr

Question 29.

Read the following Passage. Understand the Mathematical concept in it and answer the questions that follow. Each question carries 1 score.

The common difference of the aritlometic sequence $15,14,13,12, \ldots \ldots . .$. is $14-15=-1$. First term of the sequence is 15 and the $15^{\text {th }}$ term is $15+14 \times-1=15-14=1$.
Similarly the $4^{\text {th }}$ term is 12 and the $12^{\text {th }}$ term is 4 .
Its $16^{\text {th }}$ term is, $x_{16}=15+15 \times-1=15-15=0$. So the sum of the first 31 terms is allso zero. That is if the $n^{\text {th }}$ term of an arithmetic sequence with common difference -1 is m, then the $\mathrm{m}^{\text {th }}$ term is n and the $(\mathrm{m}+\mathrm{n})^{\text {th }}$ term is zero.
(a) Seventh term of an arithmetic sequence is 10 and the $10^{\text {th }}$ term is 7 . What is the common difference?
(b) What is the $21^{\text {st }}$ term of the arithmetic sequence $21,20,19, \ldots$. ?
(c) $5^{\text {th }}$ term of an arithmetic sequence is 17 and the $17^{\text {th }}$ term is 5 . Which term of the sequence is zero?
(d) $5^{\text {th }}$ term of an arithmetic sequence is 17 and the $17^{\text {th }}$ term is 5 . What is the $44^{\text {th }}$ term ? First term of an arithmetic sequence is n and the $n^{\text {th }}$ term is 1 . What is the $(n+1)^{\text {th }}$ term?
(f) The first term of an arithmetic sequence is n and the $n^{\text {th }}$ term is 1 . Sum of how many terms, starting from the first term, of this sequence is zero ?

Solution

(a) common difference $=-1$.
(b) $21^{\text {st }}$ term becomes 1
(c) $22^{\text {nd }}$ term becomes 0
(d) $44^{\text {th }}$ term $=22$ ne term -22

$$
\text { ie., } 0-22=-22 .
$$

(e) $(\mathbf{n}+1)$ th term be 0 .
(f) $\mathbf{0}$ be the sum of $2 \mathrm{n}+1$ th term.
drvsr

Prepared by Dr.V.S. RaweendraNath
 9447206495.

