SSLC Examination March 2020 Mathematics

English Version Questions and Detailed Solutions.

Prepared by Dr.V.S. Raveendra Math

Question 1.

- (a) Write the 6th term of the arithmetic sequence 1, 25, 49, 73, 97,
- (b) How many perfect square terms are there in the arithmetic sequence 97, 73, 49,?

Solution. (a) Given arithmetic sequence 1,25,49,73,97,...First term (f) = 1 ; d = 25 – 1 = 24. 6^{th} term = f + 5d ; \Rightarrow 1 + 5 × 24 1 + 120 = 121.(b) Given arithmetic sequence 97,73,49,...We know that the perfect square numbers be 1, 4, 9, 16, Hence the given sequence be 97,73,49, 25,1. From this perfect square

numbers are 49,25,and 1. ∴ Number of perfect square term = 3.

Question 2.

Chords AB and CD are intersecting at P. AB=10 centimetres, PB=4 centimetres and PD=3 centimetres.

....drvsr

.

(a) What is the length of PA?

(b) Find the length of PC.

Write the polynomial $p(x) = x^2 - 4$ as the product of two first degree polynomials.

Solution Given polynomial = $p(x) = x^2 - 4$ First degree polynomial $x^2 - 4$ = (x + 2) (x - 2)drvsr

Question 4.

In the figure, O is the centre of the circle and $x^2 + y^2 = 25$ is the equation of the circle.

(a) What is the radius of the circle ?

(b) Write the equation of the circle whose centre is at the origin and radius is 3.

Solution

Given circle - $x^2 + y^2 = 25$. (a) We know $x^2 + y^2 = r^{2}$ ie., $r^2 = 25$; $r = \sqrt{25} = 5$. \therefore r = 5. (b) Given radius = 3 Hence the equation of the circle = $x^2 + y^2 = r^{2} \Rightarrow x^2 + y^2 = 3^{2}$.

$\Rightarrow x^2 + y^2 = 9.$

Question 5.

- Write the first term and the common difference of the arithmetic sequence whose algebraic expression is 3n+5.
- First term of an arithmetic sequence is 8 and the common difference is 5. Write its algebraic form.

Solution Given $x_n = 3n + 5$. (a)Put n = 1 get first term ie., first term $= 3 \times 1+5=3+8=8$ common difference = 3 [\because coefficient of n be the d] (b) Given f = 8; d = 5We know $x_n = dn + f - d$) = 5n + (8 - 5)= 5n + 3.

Question 6.

the figure, $\angle ABC = 90^\circ$, $\angle C = \angle D = 45^\circ$, AB = 10 centimetres.

.drvsr

What is the length of AC ?

What is the radius of the circumcircle of triangle ABC ?

What is the radius of the circumcircle of triangle ABD ?

(a) The length of AC = $10\sqrt{2}$ (b) Radius of the circumcircle of $\triangle ABC$ = Half of the hypotenuses AC = $\frac{10\sqrt{2}}{2}$ = $5\sqrt{2}$.

(c) Radius of the circumcircle of **△ABD**

= Half of the hypotenuses AC = $\frac{10\sqrt{2}}{2}$ = $5\sqrt{2}$ drvsr

Question7.

Draw a circle radius 3cm. Mark a point P at a distance 6cm from the center of the circle . Draw tangents from P to the circle.

Solution

Question 8

-) What is the common difference of the arithmetic sequence x 1, x, x + 1,?
 - If x-1 is an even number, which is the next even number ?
 - Prove that the product of two consecutive even numbers added to 1 gives a perfect square.

Solution

(a) Given sequence x - 1, x, x + 1, d = x - (x - 1) = x - x + 1 = 1.
(b) Given even number = x - 1
(c) Let consecutive two even number be (x - 1) and (x + 1)
By question, the product of two consecutive numbers + 1
ie., (x - 1) (x + 1) 1 = x¹ - 1 + 1 = x².
Here x² being a perfect square .
Hence proved.

.....drvsr

Question 9

the figure, ABCD is a square. Its diagonals are parallel to the coordinate axes. AC = 6 and the coordinates of A is (3, 2) write the coordinates of the vertices C, B and D.

Solution

Given , coordinates of A = (3, 2) AC be parallel to to the x-axis

: the coordinates of C

= (3+6, 2) = (9, 2)

coordinates of the mid point of AC

= (6,2)

We know that the diagonals are equal in a square.

... the coordinates of B =(6, 2 - 3)= (6,-1) coordinates of D = (6, 2+3) = (6, 5) Hence the coordinates of A = (3,2) Coordinates of B = (6, -1) Coordinates of C = (9,2) Coordinates of D = (6,5).

Question 10.

In the figure, ABCD is a cyclic quadrilateral. Also $\angle A + \angle D = 210^\circ$, $\angle D + \angle C = 250^\circ$.

.....drvsr

What is $\angle A + \angle C$? Find the measures of $\angle A$ and $\angle C$.

Question 11.

The figure of a square sheet of paper is shown below. Length of one side of the paper sheet is 36 centimetres and AB = 10 centimetres. The shaded portion is cut out and folded into a square pyramid.

What is the length of the base edge of the pyramid ?

What is the slant height of the pyramid ?

Find the lateral surface area of the pyramid.

Prepared by V.S.Dr. RaveendraMath

Solution Given, Side of the paper sheet = 36cm².

AB = 10cm.

(a) Base edge of the pyramid AB = 10cm.

(b) Slant height of the pyramid $\frac{36-10}{2}$ = 26/2 = 13cm.

[: a + 2I = 36, side of the larger square] (c) Lateral surface area = 2al = $2 \times 10 \times 13 = 260 \text{ cm}^2$.

Question 12.

- (a) What is the sum of the first 5 terms of the arithmetic sequence 1, 3, 5, 7,?
- (b) What is the sum of the first n terms of the arithmetic sequence 1, 3, 5, 7,?
- (c) Find the sum of the first n terms of the arithmetic sequence $\frac{1}{n}, \frac{3}{n}, \frac{5}{n}, \frac{7}{n}, \frac{5}{n}, \frac{7}{n}, \frac{5}{n}, \frac{7}{n}, \frac{5}{n}, \frac{7}{n}, \frac{5}{n}, \frac{7}{n}, \frac{5}{n}, \frac{7}{n}, \frac{7}{n},$
- (d) What is the sum of first 2020 terms of the arithmetic sequence $\frac{1}{2020}, \frac{3}{2020}, \frac{5}{2020}, \dots, ?$

Prepared by V.S.Dr. RaveendraMath

.....drvsr

Solution (a) Given sequence = 1,3,5,7,..... We know sum = n^2 , n = 5 \therefore sum of the first 5 terms = 5² = 25. (b) sum of the first n terms = n^2 . (c) Given sequence = $\frac{1}{n}, \frac{3}{n}, \frac{5}{n}, \frac{7}{n}$. ----We know, sum of the first n terms $=\frac{n^2}{n}=n$. (d) Given sequence $\frac{1}{2020}, \frac{3}{2020}, \frac{5}{2020}$ We know, sum of the first n terms $=\frac{n^2}{n}=n$ ie., , sum of the first 2020 terms = n = 2020.drvsr

Question 13

Draw a rectangle of length 4 centimetres and breadth 2 centimetres. Draw a square having the same area of the rectangle.

Contraction.

Contract rectangle ABCD in the given measurement. Extant the line AB to BE, such that BE = BC .Draw a semi circle AE as diameter and draw a parallel line BF through B and then BF as length then draw the square BFGH.

.....drvsr

Question 14.

In a school, the total number of students in 10 A division is equal to the total number of students in 10 B. One student is to be selected from each division. Number of boys in

10 A is 20. The probability of selecting a boy from 10 A is $\frac{2}{5}$ and that of from 10 B is $\frac{3}{5}$.

- (a) How many students are there in 10 A ?
- (b) What is the probability of selecting a girl from 10 A ?
- (c) How many boys are there in 10 B ?
- (d) What is the probability of both the selected students being boys ?

	Class XA	Class XB		
Boys	20	30		
Girls	30	20		
Total	50	50		

Solution

Given probability of boys in XA = $\frac{2}{5}$ Given probability of boys in XB = $\frac{3}{5}$ (a) Number of boys in XA

Perimeter of the rectangle in the figure is 36 centimetres. $AC = \sqrt{164}$ centimetres.

- (a) What is AB + BC ?
- (b) Find the length of AB.

Solution Given the perimeter = 36cm. **AC =** $\sqrt{164}$ **cm**. (a) ie., 2(l+b) = 36 : AB + BC = $\frac{36}{2}$ = 18cm. (b) Let AB = x, BC = 18 - xIn right, Δ ABC by Pythagoras $AC^2 = AB^2 + BC^2$ le $164 = x^2 + (18 - x)^2$. $x^2 + 324 - 36x + x^2 = 164$ $2x^2 - 36x = 164 - 324 = -160$ dividing by 2 $x^2 - 18x = -80$ [square completion method] $x^2 - 18x + 81 = -80 + 81$ ie $(x - 9)^2 = 1$ $x - 9 = \pm 1$ x - 9 = 1 or x - 9 = -1x = 10 or = 8 ; AB = 10 cmdrvsr

Question 16

In triangle ABC, $\angle A = \angle B = 30^\circ$, AC = 4 centimetres.

- (a) What is the length of BC ?
- (b) Find the length of AB.
- (c) In triangle PQR, PQ = $4\sqrt{3}$ centimetres, $\angle P = \angle Q = 30^{\circ}$. Draw the triangle.

Solution Given, ⊹ С $/A = /B = 30^{\circ}$. 60% 60 AC = 4cm2 Draw CD \perp AB. 300 30° В In right \triangle ADC, 2√3 2√3 Ď $30^{\circ}:60^{\circ}:90^{\circ}$ 1 : $\sqrt{3}$: 2

DC: AD: AC $: x\sqrt{3}:2x$ X $2:2\sqrt{3}:4$ DC = 2; $AD = 2\sqrt{3}$; AC = 4(a) Length of BC = AC = 4cm(b) Length of AB = AD + DB $= 2\sqrt{3} + 2\sqrt{3} = 4\sqrt{3}$ cm **(c)** Q Draw PR = 4cm and 30° make /R be 4√3 120⁰ and 120° Joint PQ. 30° \wedge **PRQ be the** 4 required triangle. drvsr

Question 17.

- (a) If $p(x) = x^2 7x + 13$, What is p(3)?
- (b) Write the polynomial p(x) p(3) as the product of two first degree polynomials.
- (c) Find the solutions of the equation p(x) p(3) = 0.

Solution
(a) Given polynomial

$$p(x) = x^2 - 7x + 13$$

 $p(3) = 3^2 - 7 \times 3 + 13$
 $= 9 - 21 + 13 = 1$.
(b) $p(x) - p(3) = x^2 - 7x + 13 - 1$
 $= x^2 - 7x + 12 = (x - 3) (x - 4)$
Hence the product two first degree
polynomial = $(x - 3) (x - 4)$.
(c) $p(x) - p(3) = 0$
ie., $x^2 - 7x + 12 = 0$
 $\Rightarrow (x - 3) (x - 4) = 0$
 $\Rightarrow (x - 3) = 0$ or $(x - 4) = 0$
ie., $x = 3$ or $x = 4$.
Hence the solution $x = 3$ and 4.

Question 18.

In the figure, O is the centre of both the circles. AB and AC touch the small circle at P and Q. A, B and C are points on the large circle.

- (a) If AP = 5 centimetres, then what is the length of AQ ?
- (b) Prove that AB = AC.
- (c) If AP=5 centimetres and ∠A=90°, then what is the radius of the small circle ?

Solution (a) Given AP = 5 cm Hence the length of AQ = 5cm. [`Same tangents from A] (b) AB and AC are tangents OP ⊥ AB and OQ ⊥ AC. [`Chord bisector theorem] AP = BP and AQ = QC ie., AB = AC. Hence proved.

(c) Given $\angle A = 90^\circ$, So we can see that APOQ be a square.

[\because OP and OQ be radii \therefore /APO = /AQO = 90°. ie., /POQ = 90°] Hence radius of the small circle = 5cm.

Question 19.

Draw the coordinate axes and mark the points A(-3, 0), B(3, 0) and C(0, $3\sqrt{3}$).

Solution

SSLC Maths 2020 Mmarch Detailed Solution

Prepared by V.S.Dr. RaveendraMath

.....drvsr

Question 20.

A sector of radius 12 centimetres and central angle 120° is rolled up into a cone.

- (a) What is the slant height of the cone ?
- (b) Find the radius and the height of the cone.
- (c) What is the central angle of the sector to be used to make a cone of base radius √2 centimetres and height 4 centimetres ?

Solution

(a) Radius of the sector = 12cm
 [We know that radius of the sector be the slant height of the cone]

(b) We know
$$\frac{r}{l} = \frac{x^0}{360} \Rightarrow \frac{r}{12} = \frac{120}{360}$$

 $\Rightarrow 360r = 12 \times 120 \Rightarrow r = \frac{12 \times 120}{360}$

:
$$r = 4cm$$
. Radius = 4cm
 $h = \sqrt{l^2 - r^2} = \sqrt{12^2 - 4^2} = \sqrt{144 - 16}$
 $= \sqrt{128} = 8\sqrt{2}$. cm.

(c) We know that
$$\frac{r}{l} = \frac{x}{360}$$

Center angle (x⁰) = $\frac{360 \times r}{l}$. find 'l'

$$I = \sqrt{h^{2} + r^{2}} \text{ given } r = \sqrt{2} \text{ , h} = 4\text{ cm} \text{ .}$$

∴ $I = \sqrt{4^{2} + \sqrt{2^{2}}} = \sqrt{16 + 2} = \sqrt{18} = 3\sqrt{2}.$
∴ Center angle $(x^{0}) = \frac{360 \times r}{l}$
 $= \frac{360 \times \sqrt{2}}{3\sqrt{2}} = 120^{0}.$
...drvsr
Question21.

(a) What is the slope of the line passing through the points (5, 0) and (3, 2) ? Write the equation of the line.

- (b) The x coordinate of a point on the line x-y=5 is 5. What is the y coordinate of that point ?
- (c) Write the coordinates of the point of intersection of the lines x+y=5 and x-y=5.

Solution
(a) Given points (5,0) and (3,2)
Slope =
$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{2 - 0}{3 - 5} = \frac{2}{-2} = -1$$
.
Equation of the line =
= y - y_1 = m(x - x_1)
= y - 0 = -1 (x - 5)

y = -x + 5 ie., x + y - 5 = 0 be the equation. (b) If x = 5; ie., 5 - y = 5; -y = 5 - 5 = 0. y coordinates = 0. (c) Given x + y = 5 and x - y = 0. Intersection of the line, to solve the equation. ie., x + y = 5 \rightarrow (1); x - y = 0 \rightarrow (2) solve (1) and (2) we get x and y= 5, and 0 So the coordinates = (5, 0).

Question 22.

Sum of the first 4 terms of an arithmetic sequence is 72. Sum of the first 9 terms is also 72.

- (a) What is the 5th term of the sequence ?
- (b) Find the sum of the first five terms.
- (c) Write the sequence.

Solution

Given sum of the first 4 term = 72. sum of the first 9 term = 72.

(a) 5th term (s₅) =
$$\frac{72}{9}$$
 = 8.

(b) Sum of the first 5 term
$$(s_5)$$

= $s_4 + x_5 = 72 + 8 = 80$.
(c) $X_3 = 80/5 = 16$
 $X_3 + 2d = X_5$
 $16 + 2d = 8$
 $2d = -8$
 $d = -4$
 $X_1 = X_3 - 2d = 16 - 2 \times -4 = 24$
Sequence = 24, 20, 16, 12, 8,....
drvsr
Question 23.

A boy standing at the edge of a canal sees the top of a tree on the other edge at an elevation of 60°. Stepping 12 metres back, he sees it at an elevation of 30°. Find the height of the tree.

Let AB be the height of the tree. B be the first position of the boy C be the second position of the boy. BC = 12 ; $\angle C = 30^\circ$; $\angle BPA = 60^\circ$; $\angle PBA = 30^\circ$; $\angle A = 90^\circ$. [see the figure] We can see that $\triangle CBD$ be an isosceles. $\therefore BC = BD = 12$.

From right $\triangle BAP$, 30° ; 60° ; 90° .

ie.,	1 : √3 : 2
\Rightarrow	AD: AB:BD
	$\downarrow \qquad \downarrow \qquad \downarrow$
\Rightarrow	x : x√3 : 2x
	$\downarrow \qquad \downarrow \qquad \downarrow$
\Rightarrow	6 : 6√3 : 12.
!-	

 $\therefore AB = 6\sqrt{3}$ Hence the height of the tree = $6\sqrt{3m}$OR....drvsr

Another method by using tan formula to find the height

h =
$$\frac{a \tan A \cdot \tan B}{\tan A - \tan B}$$

= $\frac{12 \tan 30^{\circ} \cdot \tan 60^{\circ}}{\tan 30^{\circ} + \tan 60^{\circ}}$
= $\frac{12 \times \sqrt{3} \cdot \frac{1}{\sqrt{3}}}{\sqrt{3} - \frac{1}{\sqrt{3}}} = \frac{12}{3 - \frac{1}{\sqrt{3}}} = \frac{12}{\frac{2}{\sqrt{3}}}$
= $\frac{12\sqrt{3}}{2} = 6\sqrt{3}$ m.
Hence the height = $6\sqrt{3}$ m.

Question 24

In $\triangle ABC$, AB = 5 centimetres, $\angle A = 65^{\circ}$, $\angle B = 55^{\circ}$. Draw the triangle ABC and draw the incircle. Measure the radius of the incircle.

A circle is drawn with (5, 3) as centre. (5, 6) is a point on the circle.

- (a) What is the radius of the circle ?
- (b) Write the equation of the circle.
- (c) What is the distance from the centre of the circle to the x-axis?
- d)) What is the length of the tangents from the origin to the circle ?

Solution (a) Radius of the circle = 6 - 3 = 3. (b) Equation of the circle = $(x - a)^2 + (y - b)^2 = r^2$ = $(x - 5)^2 + (y - 3)^2 = 3^2$ = $x^2 - 10x + 25 + y^2 - 6y + 9 = 9$ = $x^2 + y^2 - 10x - 6y + 25 = 0$ (c) Distance = radius of the circle = 3 unit (d) Length of the tangent = 5 unit [We know that x-axis be itself as the tangent]

Question 26.

- (a) The radius of a solid sphere is 6 centimetres. Find its volume and surface area.
- (b) It is cut into two equal halves. What is the total surface area of each hemisphere? What is the volume of a hemisphere?

Solution
(a) Given radius = 6cm;
Volume =
$$\frac{4}{3}\pi r^3 = \frac{4}{3}\pi 6^3 = 288\pi \text{ cm}^3$$
.
TSA = $4\pi r^2 = 4\pi \times 6^2 = 144\pi \text{cm}^2$.

(b) TSA of hemisphere = $3\pi r^2$ = $3\pi \times 6^2 = 108\pi cm^2$. Volume of hemisphere = $\frac{2}{3}\pi r^3$ = $\frac{2}{3}\pi 6^3 = 144\pi cm^3$.

The table below shows, children of a class sorted according to their marks in an examination

Marks	Number of Children	
0-10	4	
10-20	7	
20-30	10	
30-40	12	
40-50	8	
	41	

- (a) If we arrange the children from the one with the least mark to the one with the greatest, then what will be the assumed mark of the 12th student ?
- (b) Compute the median mark.

Question 27

Solution

Class	Frequency	Marks	cf
0-10	4	< 10	4
10-20	7	< 20	11 F
20-30	10 f	< 30	21 N/2
30-40	12	< 40	33
40-50	8	< 50	41
Total	41		

(a) Assumed mark of the 12th student

=
$$20 + \frac{30 - 20}{10 \times 2}$$
 = $20 + \frac{1}{2}$ = 20.5 .
(b) $\frac{N}{2} = \frac{41}{2} = 20.5$,

Median class = 20-30 l = 20; F = 11; f = 10Median = $l + \left(\frac{\frac{N}{2} - F}{f}\right)c$

In the figure, O is the centre of the large circle. Centre of the small circle is C. OP is a tangent to the small circle. $\angle BOQ = 50^{\circ}$.

- (a) ∠OAQ =
- (b) ∠OCP =
- (c) ∠APO =
- (d) ∠POQ =

Solution Given $/BOQ = 50^{\circ}$. (a) In \triangle AOQ be an isosceles ,so their base angles are equal /AOQ = 180 - 50 = 130ie., $\angle A = \angle Q = \frac{180 - 130}{2} = \frac{50}{2} = 25^{\circ}$. $\therefore / OAQ = 25^{\circ}$. **(b)** $\angle \text{OCP} = 25^{\circ} \times 2 = 50^{\circ}$. (c) $/ \text{APO} = 25^{\circ} + 90 = 115^{\circ}$. (d) $/ POQ = 180^{\circ} - (50 + /AOP)$ $= 180 - 50 - 40 = 90^{\circ}$drvsr

Question 29.

Read the following Passage. Understand the Mathematical concept in it and answer the questions that follow. Each question carries 1 score. 67

The common difference of the arithmetic sequence 15, 14, 13, 12, is 14 - 15 = -1. First term of the sequence is 15 and the 15^{th} term is $15 + 14 \times -1 = 15 - 14 = 1$.

Similarly the 4th term is 12 and the 12th term is 4.

Its 16th term is, $x_{16} = 15 + 15 \times -1 = 15 - 15 = 0$. So the sum of the first 31 terms is also zero. That is if the nth term of an arithmetic sequence with common difference -1 is m, then the mth term is n and the (m + n)th term is zero.

(a) Seventh term of an arithmetic sequence is 10 and the 10th term is 7. What is the common difference ?

- (b) What is the 21st term of the arithmetic sequence 21, 20, 19,?
- (c) 5th term of an arithmetic sequence is 17 and the 17th term is 5. Which term of the sequence is zero ?

(d) 5th term of an arithmetic sequence is 17 and the 17th term is 5. What is the 44th term ?

- (e) First term of an arithmetic sequence is n and the n^{th} term is 1. What is the $(n+1)^{th}$ term ?
- (f) The first term of an arithmetic sequence is n and the nth term is 1. Sum of how many terms, starting from the first term, of this sequence is zero ?

Solution (a) common difference = - 1. (b) 21^{st} term becomes 1 (c) 22^{nd} term becomes 0 (d) 44^{th} term = 22ne term - 22 ie., 0 - 22 = -22. (e) (n + 1)th term be 0. (f) 0 be the sum of 2n + 1th term.

.....drvsr

Prepared by Dr. V. S. Raveendra Math

9447206495.