(2) PRE BOARD EXAMINATION 2018-19
 MATHEMATICS -X

TIME: 3Hrs
MARKS: 80

General Instructions:

1. All the questions are compulsory.
2. The question paper consists of 30 questions divided into 4 sections A , B, C and D.
3. Section A comprises of 6 questions of 1 mark each. Section B comprises of 6 questions of 2 marks each. Section C comprises of 10 questions of 3 marks each. Section D comprises of 8 questions of 8 questions of 4 marks each.
4. There are no overall choice. However, an internal choice has been provided in two questions of 1 mark each, two questions of 2marks each, four questions of 3 marks each and three questions of 4 marks each. You have to attempt only one of the alternatives in all such questions.
5. Use of calculators is not permitted.

Section A

1. For what value of p are $8 p+4,6 p-2,2 p-7$ are in AP.
2. What point on x - axis is equidistant from $(7,6]$ and $(-3,4)$.

OR

If the mid-point of the line segment joining the points $P(6, b-2)$ and $Q(-2,4)$. Find the value of b.
3. Find the value(s) of k for which the equation $3 x^{2}-k \sqrt{3} x+4=0$ has real or equal roots.
4. If $\sqrt{3} \cos \theta)-\sin \theta=0$ and $0^{\circ}<\theta<90^{\circ}$, find the value of θ.

OR

Find the value of x if $\tan 3 x=\sin 45^{\circ} \cdot \cos 45^{\circ}+\sin 30^{\circ}$.
5. In $\triangle \mathrm{ABC}, \mathrm{DE} \| \mathrm{BC}$ such that $\mathrm{BC}=8 \mathrm{~cm}, \mathrm{AB}=6 \mathrm{~cm}, \mathrm{DA}=7.5 \mathrm{~cm}$. Find DE .
6. If a and b are two positive integers such that $a=5 b$. Find the HCF of a and b.

Section B

7. Prove that $2-3 \sqrt{5}$ as irrational.

OR

The LCM and HCF of two numbers are 180 and 6 respectively. If one of the numbers is 30 , find the other number.
8. Find the middle term of the AP $213,205,197 \ldots37$.

OR

If the $6^{\text {th }}$ term of an AP is -10 and its $10^{\text {th }}$ term is -26 . Find its $15^{\text {th }}$ term.
9. Find the ratio in which the point $(2, y)$ divides the line segment joining the points $A(-2,2)$ and $B(3,7)$. Also find the value of y.
10. A card is drawn from the pack of 52 playing cards. Find the probability that the card drawn is neither an ace nor a king.
11. A bag contains 24 balls out of which x are white. If one ball is drawn at random the probability of drawing a white ball is y .12 more white
balls are added to the bag. Now if a ball is drawn from the bag, the probability of drawing the white ball is $\frac{5}{3} y$. Find the value of x.
12. For what value of a and b does the following pair of equations have an infinitely many solutions:

$$
2 x+3 y=7 ; 2 a x+(a+b) y=28
$$

Section C

13. Find HCF of 441,567 and 693 using Euclid's division algorithm.
14. Find the zeroes of the polynomial $4 \sqrt{3} x^{2}+5 x-2 \sqrt{3}$. Also verify the relationship between the zeroes and their coefficient.
15. The difference of two numbers is 4 and the difference of their reciprocals is $\frac{4}{21}$. Find the numbers.
16. For what value of $k(k>0)$ is the area of the triangle with vertices $(-2,5),(k,-4)$ and $(2 k+1,10)$.

OR

Show that the points $(7,10),(-2,5)$ and $(3,-4)$ are the vertices of an isosceles right triangle.
17. Prove that: $\left[\frac{1+\sin \theta-\cos \theta]^{2}}{1+\sin \theta+\cos \theta}\right]^{2}=\frac{1-\cos \theta}{1+\cos \theta}$

OR

Prove that: $\quad \frac{\cos ^{2} \theta}{1-\tan \theta}+\frac{\sin ^{2} \theta}{\sin \theta-\cos \theta}=\mathbf{1}+\sin \theta \cos \theta$
18. A circle touches the side $B C$ of a triangle $A B C$ at a point P and touches $A B$ and $A C$ when produced at Q and R respectively. Show that $A Q=\frac{1}{2}($ Perimeter of $\triangle \mathrm{ABC})$.
19. Prove that the ratio of the areas of two similar triangles is equal to the ratio of the squares of their corresponding side.

OR

Prove that if a line is drawn parallel to one side of a triangle to intersect the other two sides at distinct points then the other two sides are divided in the same ratio.
20. In figure ABC is a right- angled triangle right angled at A.

Semicircles are drawn on $A B, A C$ and $B C$ as diameters. Find the area of the shaded region.

21. The rainwater from a roof of $22 \mathrm{~m} \times 20 \mathrm{~m}$ drains into a cylindrical vessel having diameter of base 2 m and height 3.5 m . If the vessel is just full, find the rainfall in cm .

A solid sphere of radius 10.5 cm is melted and recast into smaller solid cones each of radius 3.5 cm and height 3 cm . Find the number of cones so formed.
22. The median of the distribution given below is 14.4 . Find the values of x and y, if the sum of frequencies is 20 .

Class Interval	Frequency
$0-6$	4
$6-12$	x
$12-18$	5
$18-24$	y
$24-30$	1

Section D

23. Solve for $\mathrm{x}: \frac{1}{2 a+b+2 x}=\frac{1}{2 a}+\frac{1}{b}+\frac{1}{2 x}$

OR

A train travels at a certain average speed for a distance of 54 km and then travels a distance of 63 km at an average speed of $6 \mathrm{~km} / \mathrm{hr}$ more than the first speed. If it takes 3hours to complete the total journey. What is its first speed?
24. In an AP the sum of first ten terms is -150 and the sum of its next ten terms is -550 . Find the AP.
25. State and prove Pythagoras theorem.
26. Draw a $\triangle \mathrm{ABC}$ with side $\mathrm{BC}=6 \mathrm{~cm}, \angle \mathrm{~B}=30^{\circ}, \angle \mathrm{A}=120^{\circ}$. Then construct another Δ whose sides are $\frac{4}{3}$ times the corresponding sides of $\triangle \mathrm{ABC}$.
27. The angle of elevation of an aeroplane from a point on the ground is 60°. After a flight of 30 sec the angle of elevation becomes 30°. If the
aeroplane is flying at a constant height of $3000 \sqrt{3} \mathrm{~m}$, find the speed of the aeroplane.
OR

From the top of a building 60 m high, the angles of depression of the top and bottom of a vertical lamp post are observed to be 30° and 60° respectively. Find
i) The horizontal distance between the building and the lamp post.
ii) The height of the lamp post, $(\sqrt{3}=1.732)$
28. If the median of the following frequency distribution is 32.5 , find the value of $f 1$ and $f 2$:

C.I	$0-10$	$10-$ 20	$20-$ 30	$30-$ 40	$40-$ 50	$50-$ 60	$60-$ 70	Total
F	f 1	5	9	12	f 2	3	2	40

OR

Draw more than type ogive for the following distribution and hence find its median:

Class	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$	$80-90$
F	25	15	10	6	24	12	8

29. A cone of radius 8 cm and height 12 cm is divided into two parts by a plane through the mid -point of its axis parallel to its base. Find the ratio of the volumes of two parts.
30. Evaluate:

$$
\frac{2 \sin 68^{\circ}}{\cos 22^{\circ}}-\frac{2 \cot 15^{\circ}}{5 \tan 75^{\circ}}-\frac{3 \tan 45^{\circ} \tan 20^{\circ} \tan 40^{\circ} \tan 50^{\circ} \tan 70^{\circ}}{5}
$$

