General Instructions:

(i) All the questions are compulsory.
(ii) The question paper consists of 40 questions divided into 4 sections A, B, C, and D.
(iii) Section A comprises of 20 questions of 1 mark each. Section B comprises of 6 questions of 2 marks each. Section C comprises of 8 questions of 3 marks each. Section D comprises of 6 questions of 4 marks each.
(iv) There is no overall choice. However, an internal choice has been provided in two questions of 1 mark each, two questions of 2 marks each, three questions of 3 marks each and three questions of 4 marks each. You have to attempt only one of the alternatives in all such questions.
(v) Use of calculators is not permitted.

SECTION A

(Q 1- Q 10) are multiple choice questions. Select the most appropriate answer from the given options.

1. The pair of equations $2 x+y=3$, and $3 x-y=5$ have
(a) No solution
(b) unique solution
(c) infinitely many solutions
(d) exactly two solutions
2. Which measure of central tendency is given by the x-coordinate of the point of intersection of more than ogive and less than ogive?
(a) Mean
(b) median
(c) mean and mode
(d) mode
3. The point which divides the line segment joining the points $(8,-9)$ and $(2,3)$ in ratio $1: 2$ internally lies in the
(a) I quadrant (b) II quadrant
(c) III quadrant
(d) IV quadrant
4. The LCM of smallest two digit composite number and the smallest composite number is
(a) 20
(b) 4
(c) 44
(d) 12
5. The modal class of the following distribution is

Class	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
Frequency	6	10	12	32	20

(a) $10-20$
(b) 20-30
(c) $\quad 30-40$
(d) $40-50$
6. If $\triangle \mathrm{ABC} \sim \Delta \mathrm{DEF}, \operatorname{ar}(\triangle \mathrm{DEF})=900 \mathrm{~cm}^{2}$ and $\frac{\mathrm{AB}}{\mathrm{DE}}=\frac{1}{3}$, then $\operatorname{ar}(\triangle \mathrm{ABC})$ is
(a) $100 \mathrm{~cm}^{2}$
(b) $50 \mathrm{~cm}^{2}$
(c) $200 \mathrm{~cm}^{2}$
(d) $150 \mathrm{~cm}^{2}$
7. The decimal representation of $\frac{23}{2^{2} 5^{2}}$ will terminate after
(a) One decimal places
(b) two decimal places
(c) three decimal places
(d) none of these
8. The distance of the point $\mathrm{P}(2,3)$ from the origin (in units) is
(a) $\sqrt{13}$ units
(b) 5 units
(c) $\sqrt{15}$ units
(d) 6 units
9. If $\mathrm{A}\left(\frac{\mathrm{m}}{3}, 5\right)$ is the mid-point of the line segment joining the points $\mathrm{Q}(-6,7)$ and $\mathrm{R}(-2,3)$, 1 then the value of m is
(a) -12
(b) -4
(c) 12
(d) -6
10. Value of $\sin 30^{\circ} \cos 60^{\circ}+\cos 30^{\circ} \sin 60^{\circ}$ is
(a) -1
(b) 2
(c) 1
(d) -2

(Q 11- Q 15) Fill in the blanks :

11. In a right circular cone, the cross section made by a plane parallel to the base is a \qquad of a cone.
12. If one root of the polynomial $k x^{2}-10 \mathrm{x}+1$ is the reciprocal of the other, then the value of k is.......

OR

A quadratic polynomial whose sum and product of zeroes are $\sqrt{3}$ and 2 respectively is
13. In the given figure, $\triangle A B C \sim \triangle P Q R$, then the value of x is \qquad

14. Fill the two blanks in the sequence 6 , \qquad , 18, \qquad so that the sequence forms an A.P.
15. A number is chosen at random from the numbers $-5,-4,-3,-2,-1,0,1,2,3,4,5$. Then the probability that square of this number is less than or equal to 1 is \qquad

(Q16-Q 20) Answer the following :

16. Represent the following statement in the pair of linear equations in two variables ' 3 pens and 2 pencils together cost Rs. 34 whereas 2 pens and 3 pencils together cost Rs. 26.'
17. State whether the following statement is true or false, 'If A and B are acute angles such that $\sin A=\sin B$, then $A=B$. Justify your answer.
18. State whether the following statement is true or false, 'Every quadratic equation has atleast one real root'. Justify your answer.
19. Given that $\operatorname{HCF}(435,725)=145$, find $\operatorname{LCM}(435,725)$

OR
Write whether $\frac{2 \sqrt{45}+3 \sqrt{20}}{2 \sqrt{5}}$ on simplification is a rational or irrational number.
20. In the figure, PA and PB are tangents such that $\mathrm{PA}=11 \mathrm{~cm}$ and $\angle \mathrm{APB}=60^{\circ}$ find the length

1 of the chord AB ?

OR
The length of a tangent $P Q$, from an external point P is 24 cm . If the distance of the point P from the centre is 25 cm , then find the radius of the circle?

SECTION B

21. Find the sum of first 20 odd natural numbers?

OR

Find the 31st term of an AP : $4,8,12, \ldots \ldots \ldots$
22. In the given figure DEFG is a square and $\angle B A C=90^{\circ}$. Prove that
(i) $\triangle \mathrm{AGF} \sim \Delta \mathrm{DBG}$
(ii) $\triangle \mathrm{AGF} \sim \triangle \mathrm{EFC}$

23. Find the mode of the following data:

Age(in years)	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$
No of people	6	11	21	23	14	5

24. One card is drawn from a well shuffled deck of 52 cards. Find the probability of getting
(a) Number ' 2 ' of spades
(b) a face card
(c) a red face card
(d) a red and a king
25. Find the perimeter of DEFC

26. A vessel in shape of a cuboid is 12 m long and 10 m wide. How high must the vessel be made to hold 480 cubic metre of a liquid?

OR
The slant height of the frustum of a cone is 5 cm . If the difference between the radii of its two circular ends is 4 cm , find the height of the frustum.

SECTION C

27. Find the zeroes of the polynomial and verify the relationship between the coefficients and the zeroes. $f(x)=x^{2}+8 x+15$

OR
Obtain all zeroes of the polynomial $f(x)=x^{4}-3 x^{3}-x^{2}+9 x-6$ if two of its zeroes are $-\sqrt{3}$ and $\sqrt{3}$.
28. Prove that $\sqrt{2}$ is an irrational number.
29. If you save Rs. 1 today, Rs. 2 the next day and Rs. 3 the third day and so on, what will be your savings in 100 days?

OR

The sum of five consecutive odd integers is 685 . What are the numbers?
30. Solve :
$3 x-2 y=7$ $y=14-2 x$
31. Find the value of y if the distance between the points $\mathrm{P}(4,2)$ and $\mathrm{Q}(1, \mathrm{y})$ is 5 units.

OR

For what value of m, the points $(4,3),(m, 1)$ and $(1,9)$ are collinear.
32. Prove that $(\sin \theta+\operatorname{Cosec} \theta)^{2}+(\operatorname{Cos} \theta+\sec \theta)^{2}=7+\tan ^{2} \theta+\cot ^{2} \theta$
33. A chord AB of a circle of radius 16 cm makes a right angle at the center of the circle.

Find the area of the major and minor segments. (Take $\pi=3.14$)
34. Evaluate $\frac{\tan ^{2} 60^{0}+4 \sin ^{2} 45^{0}+2 \sec ^{2} 30^{0}+5 \cos ^{2} 90^{0}}{\operatorname{cosec} 30^{0}+\sec 60^{0}-\cot ^{2} 30^{0}}$

SECTION D

35. Prove that the ratio of the areas of two similar triangles is equal to the ratio of the squares of their corresponding sides.

OR

State and prove Pythagoras theorem.
36. Solve using quadratic formula : $\frac{1}{x}-\frac{1}{x-2}=3, x \neq 2, x \neq 0$
37. Construct a triangle with sides $4 \mathrm{~cm}, 5 \mathrm{~cm}$, and 7 cm and then another triangle whose sides are $\frac{3}{5}$ of the corresponding sides of the first triangle.

Construct a pair of tangents to a circle of radius 4 cm which are inclined to each other at an angle of 60°
38.

A toy is in the form of a cone of radius 3.5 cm is mounted on a hemisphere of same radius. The total height of the toy is 15.5 cm . Find the total surface area of the toy.

OR

A solid is in the shape of a frustum of a cone. The diameters of the two circular ends are 60 cm and 36 cm and the height is 9 cm . find the area of its whole surface and the volume.
39. As observed from the top of a light house, 100 m above sea level, the angle of depression of a ship, sailing directly towards it, changes from 30° to 45°. Determine the distance travelled by the ship during the period of observation.
40. Convert the following into "less than type" distribution and draw its ogive.

20-30
8
30-40 10

40-50 14

50-60 12

60-70 4

70-802

