PRE BOARD EXAMIATION - 2 (2019-20) MATHEMATICS (Code 041)

CLASS: XII Time: 3 hrs

Max. Marks: 80

General Instructions

- (i) All the questions are compulsory.
- (ii) The question paper consists of 36 questions divided into 4 sections A, B, C, and D.
- (iii) Section A comprises of 20 questions of 1 mark each. Section B comprises of 6 questions of 2 marks each. Section C comprises of 6 questions of 4 marks each. Section D comprises of 4 questions of 6 marks each.
- (iv) There is no overall choice. However, an internal choice has been provided in three questions of 1 mark each, two questions of 2 marks each, two questions of 4 marks each, and two questions of 6 marks each. You have to attempt only one of the alternatives in all such questions.

Q1 - Q20 are multiple choice type questions.				
Select the correct option				
1. Which of the following is not an equivalence relation on Z				(1)
a. $aRb \Leftrightarrow a+b$ is an even integer				
b.	b. $aRb \Leftrightarrow a-b$ is an even integer			
c.	c. $aRb \Leftrightarrow a < b$			
d.	$aRb \Leftrightarrow a = b$			
2. The number of solutions of the equation $\tan^{-1} 2x + \tan^{-1} 3x = \frac{\pi}{4}$ is				
a.2	b. 3	c.1	d. none	(1)
		OR		
The value of $\sin[\cot^{-1}\{\tan(\cos^{-1}x)\}]$ is				
а	. x	b. $\sqrt{1-x^2}$	$c \cdot \frac{1}{x}$	d. none

3. A square matrix A is invertible if and only if |A| is equal to

a. zero b.1 c. non zero d. none (1)

4. The radius of a sphere is changing at the rate of 0.1 cm/sec. The rate of change of its surface area when the radius is 200 cm is

a. $8 \pi \text{ cm}^2/\text{sec}$ b. $12 \pi \text{ cm}^2/\text{sec}$ c. $160 \pi \text{ cm}^2/\text{sec}$ d. $200 \pi \text{ cm}^2/\text{sec}$ (1)

5. If
$$y^2 = ax^2 + b$$
 then $\frac{d^2y}{dx^2}$ is

a. $\frac{ab}{x^3}$ b. $\frac{y^3}{ab}$ c. $\frac{ab}{y^2}$ d. $\frac{ab}{y^3}$ (1)

6. On evaluating $\int_{-\pi}^{\pi} (\sin^{15}x + x^{25}) dx$ you get

a. 0 b.
$$\pi$$
 c. $\frac{\pi}{2}$ d. -1

7. The general solution of the differential equation $\frac{dy}{dx} + y \cot x = \cos ecx$ is

a.
$$x + y \sin x = C$$
 b. $x + y \cos x = C$ c. $y + x (\sin x + \cos x) = C$
d. $y \sin x = x + C$ (1)

8. If θ is the angle between the vectors $2\hat{i} + 2\hat{j} + 4\hat{k}$ and $3\hat{i} + \hat{j} + 2\hat{k}$ then $\sin\theta$ is

a.
$$\frac{2}{3}$$
 b. $\frac{2}{\sqrt{7}}$ c. $\frac{\sqrt{7}}{2}$ d. $\sqrt{\frac{2}{7}}$

9. The objective function of Linear Programming Problem is a

a. constraint b. function to be optimized c. relation between the variables d. none (1)

10. If A and B are any two events such that P(A) + P(B) - P(A and B) = P(A), then

a.
$$P(B|A) = 1$$
 b. $P(A|B) = 1$ c. $P(B|A) = 0$ d. $P(A|B) = 0$ (1)

Events A and B are independent if

a.
$$P(A \cap B) = P(B)P(A/B)$$
 b. $P(A \cap B) = P(A)P(B/A)$ b. $P(A \cap B) = P(A)P(B/A)$ d. $P(A \cap B) = P(B)P(A)$

Fill in the blanks

11. If
$$f: R \to R$$
 defined by $f(x) = (3 - x^3)^{\frac{1}{3}}$ then $f \circ f(x)$ is ----- (1)

12. The value of
$$\tan^{-1} 1 + \cos^{-1} \left(\frac{-1}{2} \right) + \sin^{-1} \left(\frac{-1}{2} \right)$$
 is ----- (1)

13. On differentiating
$$e^{\sin^{-1}x}$$
 you get ----- (1)

14. If
$$f(x) = \int_{0}^{x} t \sin t dt$$
 then the value of $f'(x)$ is ----- (1)

15. Let \vec{a} and \vec{b} be two unit vectors and θ is the angle between them.

Then
$$\vec{a} + \vec{b}$$
 is a unit vector if θ is ----- (1)

16. If
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 then find adj. A (1)

17. Evaluate
$$\int_{0}^{\frac{\pi}{2}} \frac{\sin^4 x}{\sin^4 x + \cos^4 x} dx$$
 (1)

18. Find the area bounded by
$$x = 4 - y^2$$
 and y-axis (1)

- 19. Two dice are thrown simultaneously. If X denotes the number of sixes, find the expectation of X.
- 20. If the line drawn from the point (-2, -1, -3) meets a plane at right angle at the point (1, -3, 3) then find the equation of the plane. (1)

Short Answer type II Questions

21. Prove that
$$\cos^{-1}\frac{12}{13} + \sin^{-1}\frac{3}{5} = \sin^{-1}\frac{56}{65}$$
 (2)

22. If
$$A = \begin{bmatrix} 2 & -1 \\ 3 & 4 \end{bmatrix}$$
, $B = \begin{bmatrix} 5 & 2 \\ 7 & 4 \end{bmatrix}$ and $C = \begin{bmatrix} 2 & 5 \\ 3 & 8 \end{bmatrix}$ then (2)

find a matrix D such that CD - AB = O.

23. Find all points of discontinuity of f, where f is defined by

$$f(x) = |x| + 3$$
, if $x \le -3$
 $-2x$, if $-3 < x < 3$
 $6x + 2$, if $x \ge 3$ (2)

24. Find the equation of a curve passing through the point (-2, 3), given that

the slope of the tangent to the curve at any point
$$(x, y)$$
 is $\frac{2x}{y^2}$ (2)

25. Find $|\vec{a} - \vec{b}|$, if two vectors \vec{a} and \vec{b} are such that

$$|\vec{a}| = 2$$
 , $|\vec{b}| = 3$ and $\vec{a}.\vec{b} = 4$. (2)

26. Assume that each born child is equally likely to be a boy or a girl. If a family has two children, what is the conditional probability that both are girls given that

Long Answer type I Questions

27. Consider f: $R_+ \to [0, \infty)$ given by $f(x) = 9x^2 + 6x - 5$. Show that f is invertible and find f^{-1} .

28. Differentiate
$$(x\cos x)^x + (x\sin x)^x$$
 (4)

29. Evaluate as the limit of a sum
$$\int_{0}^{4} (x + e^{2x}) dx$$
 (4)

OR

Find
$$\int (\sqrt{\cot x} + \sqrt{\tan x}) dx$$

- 30. Show that the differential equation $2ye^{\frac{x}{y}}dx + (y 2xe^{\frac{x}{y}})dy = 0$ is homogeneous and find its particular solution, given that, x = 0 when y = 1. (4)
- 31. Reshma wishes to mix two types of food P and Q in such a way that the vitamin contents of the mixture contain at least 8 units of vitamin A and 11 units of vitamin B. Food P costs Rs 60/kg and Food Q costs Rs 80/kg. Food P contains 3 units/kg of Vitamin A and 5 units / kg of Vitamin B while food Q contains 4 units/kg of Vitamin A and 2 units/kg of vitamin B. Determine the minimum cost of the mixture.
- 32. In a factory which manufactures bolts, machines A, B and C manufacture respectively 25%, 35% and 40% of the bolts. Of their outputs, 5, 4 and 2 percent are respectively defective bolts. A bolt is drawn at random from the product and is found to be defective. What is the probability that it is manufactured by the machine B? (4)

OR

A man is known to speak truth 3 out of 4 times. He throws a die and reports that it is a six. Find the probability that it is actually a six.

Long Answer type II Questions

33. Show that
$$\Delta = \begin{vmatrix} (y+z)^2 & xy & zx \\ xy & (x+z)^2 & yz \\ xz & yz & (x+y)^2 \end{vmatrix} = 2xyz(x+y+z)^3$$
 (6)

34. A water tank has the shape of an inverted right circular cone with its axis vertical and vertex lowermost. Its semi-vertical angle is $\tan^{-1}(0.5)$. Water is poured into it at a constant rate of 5 cubic metre per hour. Find the rate at which the level of the water is rising at the instant when the depth of water in the tank is 4 m.

OR

Show that the semi-vertical angle of the cone of the maximum volume and of given slant height is $\tan^{-1} \sqrt{2}$.

35. Find the area of the region enclosed between the two circles

$$x^{2} + y^{2} = 4$$
 and $(x-2)^{2} + y^{2} = 4$. (6)

OR

Using the method of integration find the area of the triangle ABC, coordinates of whose vertices are A(2, 0), B (4, 5) and C (6, 3).

36. Find the image of the point having the position vector $\hat{i} + 3\hat{j} + 4\hat{k}$ in the plane

$$\vec{r} \cdot (2\hat{\imath} - \hat{\jmath} + \hat{k}) + 3 = 0.$$
 (6)