PRE BOARD EXAMIATION - 2 (2019-20)
 MATHEMATICS (Code 041)

General Instructions

(i) All the questions are compulsory.
(ii) The question paper consists of 36 questions divided into 4 sections A, B, C , and D .
(iii) Section A comprises of 20 questions of 1 mark each. Section B comprises of 6 questions of 2 marks each. Section C comprises of 6 questions of 4 marks each. Section D comprises of 4 questions of 6 marks each.
(iv) There is no overall choice. However, an internal choice has been provided in three questions of 1 mark each, two questions of 2 marks each, two questions of 4 marks each, and two questions of 6 marks each. You have to attempt only one of the alternatives in all such questions.

Q1-Q20 are multiple choice type questions.

Select the correct option

1. Which of the following is not an equivalence relation on Z
a. $\quad a R b \Leftrightarrow a+b$ is an even integer
b. $a R b \Leftrightarrow a-b$ is an even integer
c. $a R b \Leftrightarrow a<b$
d. $\quad a R b \Leftrightarrow a=b$
2. The number of solutions of the equation $\tan ^{=1} 2 x+\tan ^{-1} 3 x=\frac{\pi}{4}$ is
a. 2
b. 3
c. 1
d. none

OR
The value of $\sin \left[\cot ^{-1}\left\{\tan \left(\cos ^{-1} x\right)\right\}\right]$ is
a. x
b. $\sqrt{1-x^{2}}$
C. $\frac{1}{x}$
d. none
3. A square matrix A is invertible if and only if $\quad|A|$ is equal to
a. zero
b. 1
c. non zero
d. none
4. The radius of a sphere is changing at the rate of $0.1 \mathrm{~cm} / \mathrm{sec}$. The rate of change of its surface area when the radius is 200 cm is
a. $8 \pi \mathrm{~cm}^{2} / \mathrm{sec}$
b. $12 \pi \mathrm{~cm}^{2} / \mathrm{sec}$
c. $160 \pi \mathrm{~cm}^{2} / \mathrm{sec}$
d. $200 \pi \mathrm{~cm}^{2} / \mathrm{sec}$
5. If $y^{2}=a x^{2}+b$ then $\frac{d^{2} y}{d x^{2}}$ is
a. $\frac{a b}{x^{3}}$
b. $\frac{y^{3}}{a b}$
c. $\frac{a b}{y^{2}}$
d. $\frac{a b}{y^{3}}$
6. On evaluating $\int_{-\pi}^{\pi}\left(\sin ^{15} x+x^{25}\right) d x$ you get
a. 0
b. π
c. $\frac{\pi}{2}$
d. -1
7. The general solution of the differential equation $\frac{d y}{d x}+y \cot x=\cos e c x \quad$ is
a. $x+y \sin x=C$
b. $x+y \cos x=C$
c. $y+x(\sin x+\cos x)=C$
d. $y \sin x=x+C$
8. If θ is the angle between the vectors $2 \hat{i}+2 \hat{j}+4 \hat{k}$ and $3 \hat{i}+\hat{j}+2 \hat{k}$ then $\sin \theta$ is
a. $\frac{2}{3}$
b. $\frac{2}{\sqrt{7}}$
c. $\frac{\sqrt{7}}{2}$
d. $\sqrt{\frac{2}{7}}$
9. The objective function of Linear Programming Problem is a
a. constraint
b. function to be optimized
c. relation between the variables d. none
10. If A and B are any two events such that $P(A)+P(B)-P(A$ and $B)=P(A)$, then
a. $\mathrm{P}(\mathrm{B} \mid \mathrm{A})=1$
b. $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=1$
c. $\mathrm{P}(\mathrm{B} \mid \mathrm{A})=0$
d. $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=0$

OR

Events A and B are independent if
a. $\quad P(A \cap B)=P(B) P(A / B)$
b. $P(A \cap B)=P(A) P(B / A)$
b. $\quad P(A \cap B)=P(A)+\mathrm{P}(\mathrm{B})$
d. $P(A \cap B)=P(B) P(A)$

Fill in the blanks

11. If $f: R \rightarrow R$ defined by $f(x)=\left(3-x^{3}\right)^{\frac{1}{3}}$ then $f o f(x)$ is -----
12. The value of $\tan ^{-1} 1+\cos ^{-1}\left(\frac{-1}{2}\right)+\sin ^{-1}\left(\frac{-1}{2}\right)$ is $---\cdots--$
13. On differentiating $e^{\sin ^{-1} x}$ you get
14. If $f(x)=\int_{0}^{x} t \sin t d t$ then the value of $f^{\prime}(x)$ is
15. Let $\quad \vec{a}$ and $\quad \vec{b}$ be two unit vectors and θ is the angle between them. Then $\vec{a}+\bar{b}$ is a unit vector if θ is --------

Short Answer Type I Questions

16. If $\mathrm{A}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ then find $\operatorname{adj} . \mathrm{A}$
17. Evaluate $\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{4} x}{\sin ^{4} x+\cos ^{4} x} d x$
18. Find the area bounded by $x=4-y^{2}$ and y-axis
19. Two dice are thrown simultaneously. If X denotes the number of sixes, find the expectation of X .
20. If the line drawn from the point $(-2,-1,-3)$ meets a plane at right angle at the point $(1,-3,3)$ then find the equation of the plane.

Short Answer type II Questions

21. Prove that $\cos ^{-1} \frac{12}{13}+\sin ^{-1} \frac{3}{5}=\sin ^{-1} \frac{56}{65}$
22. If $A=\left[\begin{array}{cc}2 & -1 \\ 3 & 4\end{array}\right] \quad B=\left[\begin{array}{ll}5 & 2 \\ 7 & 4\end{array}\right]$ and $C=\left[\begin{array}{ll}2 & 5 \\ 3 & 8\end{array}\right]$ then find a matrix D such that $C D-A B=O$.
23. Find all points of discontinuity of f, where f is defined by

$$
\begin{align*}
& \mathrm{f}(\mathrm{x})=|x|+3 \text {, if } \mathrm{x} \leq-3 \\
& -2 x \quad, \text { if }-3<x<3 \\
& 6 x+2 \text {, if } x \geq 3 \tag{2}
\end{align*}
$$

24. Find the equation of a curve passing through the point $(-2,3)$, given that the slope of the tangent to the curve at any point (x, y) is $\frac{2 x}{y^{2}}$
25. Find $|\vec{a}-\vec{b}|$, if two vectors \vec{a} and \vec{b} are such that

$$
\begin{equation*}
|\vec{a}|=2,|\vec{b}|=3 \text { and } \vec{a} \cdot \vec{b}=4 . \tag{2}
\end{equation*}
$$

26. Assume that each born child is equally likely to be a boy or a girl. If a family has two children, what is the conditional probability that both are girls given that
(i) the youngest is a girl, (ii) at least one is a girl?

Long Answer type I Questions

27. Consider $\mathrm{f}: R_{+} \rightarrow[0, \infty)$ given by $\mathrm{f}(\mathrm{x})=9 \mathrm{x}^{2}+6 \mathrm{x}-5$. Show that f is invertible and find f^{-1}.
28. Differentiate $(x \cos x)^{x}+(x \sin x)^{x}$
29. Evaluate as the limit of a sum $\int_{0}^{4}\left(x+e^{2 x}\right) d x$

OR
Find $\int(\sqrt{\cot x}+\sqrt{\tan x}) d x$
30. Show that the differential equation $2 y e^{\frac{x}{y}} d x+\left(y-2 x e^{\frac{x}{y}}\right) d y=0$ is homogeneous and find its particular solution, given that, $x=0$ when $y=1$.
31. Reshma wishes to mix two types of food P and Q in such a way that the vitamin contents of the mixture contain at least 8 units of vitamin A and 11 units of vitamin B. Food P costs Rs 60/kg and Food Q costs Rs 80/kg. Food P contains 3 units/kg of Vitamin A and 5 units / kg of Vitamin B while food Q contains 4 units/kg of Vitamin A and 2 units/kg of vitamin B. Determine the minimum cost of the mixture.
32. In a factory which manufactures bolts, machines A, B and C manufacture respectively $25 \%, 35 \%$ and 40% of the bolts. Of their outputs, 5,4 and 2 percent are respectively defective bolts. A bolt is drawn at random from the product and is found to be defective. What is the probability that it is manufactured by the machine B ?

OR

A man is known to speak truth 3 out of 4 times. He throws a die and reports that it is a six. Find the probability that it is actually a six.

Long Answer type II Questions

33. Show that $\Delta=\left|\begin{array}{ccc}(y+z)^{2} & x y & z x \\ x y & (x+z)^{2} & y z \\ x z & y z & (x+y)^{2}\end{array}\right|=2 x y z(x+y+z)^{3}$
34. A water tank has the shape of an inverted right circular cone with its axis vertical and vertex lowermost. Its semi-vertical angle is $\tan ^{-1}(0.5)$. Water is into it at a constant rate of 5 cubic metre per hour. Find the rate at which the level of the water is rising at the instant when the depth of water in the tank is 4 m .

OR

Show that the semi-vertical angle of the cone of the maximum volume and of given slant height is $\tan ^{-1} \sqrt{2}$.
35. Find the area of the region enclosed between the two circles

$$
\begin{equation*}
x^{2}+y^{2}=4 \quad \text { and }(x-2)^{2}+y^{2}=4 \tag{6}
\end{equation*}
$$

OR

Using the method of integration find the area of the triangle ABC , coordinates of whose vertices are $\mathrm{A}(2,0), \mathrm{B}(4,5)$ and $\mathrm{C}(6,3)$.
36. Find the image of the point having the position vector $\hat{\imath}+3 \hat{\jmath}+4 \hat{k}$ in the plane

$$
\begin{equation*}
\vec{r} \cdot(2 \hat{\imath}-\hat{\jmath}+\hat{k})+3=0 . \tag{6}
\end{equation*}
$$

