Model examination 2017

Mathematics

1)

a) 18
b) $1+8,2+10,3+12,4+14,---------$
c) $\mathrm{x}_{\mathrm{n}}=3 \mathrm{n}+6$
(3 marks)
2)
a) $\mathrm{X}_{10}=12+99=111$
b) $1111-12=1099$

1099 is not exactly divisible by 11 hence 1111 is not a term of this sequence
(2 marks)
3)
a) $6 / 2($ first term + last term $)=66$
$3\left(6+6^{\text {th }}\right.$ term $)=66$
$6+6^{\text {th }}$ term $=22$
$6^{\text {th }}$ term $=22-6=16$
b) $6^{\text {th }}$ term $=16$
$6+5 d=16$
$5 d=10$
$d=2$
c) $6,8,10,12,14,16$
(5marks)
4)
a) $\mathrm{x}_{\mathrm{n}}=4 \mathrm{n}+2$
b) $S_{n}=n(2 n+4)=2 n^{2}+4$
c) $2 n^{2}+4 n=510$
$n^{2}+2 n=225$
$(\mathrm{n}+1)^{2}=16$
$n+1=16$ or $n+1=-16$
Number of terms cannot be negative hence $\mathrm{n}=15$

OR

One side of square $=x$
Then $\mathrm{x}(\mathrm{x}+4)=396$
$\mathrm{x}^{2}+4 \mathrm{x}=396$
$(x+2)^{2}=400$
$\mathrm{x}+2=20$ or $\mathrm{x}+2=-20$
$\mathrm{x}=18$ or $\mathrm{x}=-22$
One side of square cannot be negative
Hence one side of the square $=18 \mathrm{~cm}$
5) Let the positive number be ' x '

Then $\mathrm{x}+1=\mathrm{x}^{2}$
$x^{2}-x-1=0$
solving $\mathrm{x}=\frac{1+\sqrt{5}}{2}$ or $\mathrm{x}=\frac{1-\sqrt{5}}{2}$
Here the number is positive hence
Number $=\frac{1+\sqrt{5}}{2}$
(3marks)
6) $p(x)=x^{3}+x^{2}+x+1$
a) $p(1)=4$
b) $\mathrm{p}(-1)=0$
c) Let the first degree polynomial $=a x+b$

Then $p(x)=x^{3}+x^{2}+x+1-a x-b$ $p(1)=0$ hence $4-a-b=0$ or $a+b=4---(1)$ $p(-1)=0$ hence $0+a-b=0$ or $a-b=0----(2)$ solving (1) and (2) $a=b=2$ hence first degree polynomial $=2 \mathrm{x}+2$
7)
a) $6 \times 6=36$
b) $(1,1),(1,3),(1,5),(3,1),(3,3),(3,5),(5,1),(5,3),(5,5)$

There are 9 pairs
c) Probability of getting product as odd $=\frac{9}{36}=\frac{1}{4}$
d) Probability of getting product as even $=\frac{27}{36}=\frac{3}{4}$
8)

Monthly Income(Rs)	Number of households
Up to 5000	4
Up to 6000	12
Up to 7000	16
Up to 8000	20
Up to 9000	23
Up to 10000	25

Income of the $13^{\text {th }}$ worker is the median Income
Income of the $13^{\text {th }}$ worker $=7000$
Median Income $=$ Rs. 7000
(2marks)
9)
a) Height of the $21^{\text {st }}$ child is the median height
b) 145-150
c) The difference in height and the corresponding difference in the number of children are proportional

Height(cm)	Number of children
Below 140	5
Below 145	13
Below 150	23
Below 155	32
Below 160	38
Below 165	41

x	140	145	150	155	160	165
y	5	13	23	32	38	41

Median of $\mathrm{y}=\frac{41}{2}=20.5$
When y increases 10 the corresponding increase in x is 5
Hence When y increases 1 the corresponding increase in y is $\frac{5}{10}=\frac{1}{2}$
Therefore when y increases 7.5 the corresponding increase in y is $\frac{1}{2} x 7.5=3.75$

$$
\text { Median height }=145+3.75=148.75 \mathrm{~cm}
$$

(5marks)
10) The coordinates of other two vertices are $(2,1)$ and $(5,3)$
(2amrks)
11)

- $\mathrm{AP}=4$ and $\mathrm{BP}=2$
- $\mathrm{DQ}=4$ and $\mathrm{CQ}=2$
- Coordinates of C is $(7,10)$

12)

$\frac{\text { difference of } y \text { coordinates }}{\text { difference of } x \text { coordinates }}=\frac{6-4}{5-1}=\frac{2}{4}=\frac{1}{2}$
a) If the x coordinate is 3 then the y coordinate is 5
b) If the y coordinate is 3 then the x coordinate is -1
c) The difference in y coordinate is half the difference in x coordinates
d) $2 y-x=7$
13)
a) Length of the line $=\sqrt{20}$ or $2 \sqrt{5}$
b) Coordinate of the midpoint $=(2,2)$
c) Let (x, y) be a point on the circle

$$
\begin{aligned}
& (x-2)^{2}+(y-2)^{2}=(\sqrt{5})^{2} \\
& x^{2}-4 x+4+y^{2}-4 y+4=5 \\
& x^{2}+y^{2}-4 x-4 y+3=0
\end{aligned}
$$

d) Let the circle touches the x axis $(\mathrm{x}, 0)$ then
$x^{2}-4 x+3=0$
$(\mathrm{x}-3)(\mathrm{x}-1)=0$
$\mathrm{x}=3$ or $\mathrm{x}=1$
Circle touches the x axis at $(3,0)$ and $(1,0)$
14)

Let $\angle \mathrm{ABO}=\mathrm{x}$ and $\angle \mathrm{ACO}=\mathrm{y}$ then $\angle \mathrm{BAC}=(\mathrm{x}+\mathrm{y})$
By central angle theorem if $\angle \mathrm{BAC}=(\mathrm{x}+\mathrm{y})$ we have $<\mathrm{BOC}=2(\mathrm{x}+\mathrm{y})$
$\mathrm{AB} / / \mathrm{OP}$ hence $<\mathrm{BOP}=\mathrm{x}$ (alternate angles) similarly $<\mathrm{COQ}=\mathrm{y}$
Here $\angle \mathrm{BOC}=2(\mathrm{x}+\mathrm{y})$ hence $\angle \mathrm{POQ}=(\mathrm{x}+\mathrm{y})$
So we can seen that length of arc BC double the length of arc $P Q$
15)

a) Consider Triangle ABE and ADC

Since AE is the diameter $\angle \mathrm{ABE}=90^{\circ}$
$<$ ADC $=900$ (given)
$\angle \mathrm{AEB}=\mathrm{ACB}=\mathrm{x}$ (angles in same part of the circle)
Hence $\angle \mathrm{ABE}=90^{\circ}=\angle \mathrm{ADC}$ and $\angle \mathrm{AEB}=\mathrm{ACD}=\mathrm{x}$
Therefore Triangle ABE and ADC are similar
b) Since ABE and ADC are similar
$\frac{A D}{A B}=\frac{A C}{A E}$
From this we have $A D=\frac{A B x A C}{A E}$
Area of triangle $\mathrm{ABC}=1 / 2 \times \mathrm{BC} \times \mathrm{AD}$

$$
=1 / 2 \times \frac{A B x B C x C A}{A E}
$$

Hence the proof
16) construction (4marks)
17)
a) Construction
b) Angle between the tangents is 60°

(3 marks)
18)
a) Measures of another two angles in triangle $\mathrm{AQR}=70^{\circ}$
b) $\angle \mathrm{QPR}=70^{\circ}$
c) Measures of another two angles in triangle $\mathrm{PQR}=60^{\circ}$ and 50° (4marks)
19) $a=8 \mathrm{~cm}, \mathrm{e}=5 \mathrm{~cm}$ we have lateral edge $=3 \mathrm{~cm}$

If the lateral edge $=3 \mathrm{~cm}$ and half of the base edge is 4 cm height is negative it is not possible hence we cannot make such a square pyramid
20)
a)
$\frac{x}{360}=\frac{r}{l}$
$\frac{180}{360}=\frac{r}{l}$
$\frac{1}{2}=\frac{r}{l}$
$1=2 \mathrm{r}$
Ratio of base radius and slant height $=1: 2$
b) See the figure below

The sides of the triangles are base diameter and slant heights
Here slant height $=2 r=$ diameter
Hence all sides of the triangle are equal and it is an equilateral triangle
21)
a) $3 \pi \mathrm{r}^{2}=120 \mathrm{~cm}^{2}$

$$
\pi \mathrm{r}^{2}=40 \mathrm{~cm}^{2}
$$

Base area of the hemisphere $=40 \mathrm{~cm}^{2}$
b) TSA of the sphere $=4 \pi \mathrm{r}^{2}=4 \times 40=160 \mathrm{~cm}^{2}$
22)
a)

If angles of a triangle are $30^{\circ}, 60^{\circ}, 90^{\circ}$ sides are in the ratio $1: \sqrt{3}: 2$
If one angle is 30° and the hypotenuse is 6 cm the side opposite to 30° angle is 3 cm hence when the angle is 40° the side opposite to 40° angle is greater than 3 cm
b) See the figure below

The minimum distance from B to the line drawn through A is the perpendicular distance. From the above problem we can see that when the angle is 40° the side opposite to 40° angle is greater than 3 cm
Hence we cannot construct a triangle if the side opposite to 40° angle is 3 cm

OR

$$
\begin{aligned}
& \frac{d}{\sin D}=2 R \\
& \frac{6}{\sin 60}=2 R
\end{aligned}
$$

$2 \mathrm{R}=4 \sqrt{3} \mathrm{~cm}$ and radius $=2 \sqrt{3} \mathrm{~cm}$
(3 marks)
23)

Let the height of the hill be AB
From triangle $\mathrm{ABD}, \tan 70=\frac{A B}{B D}$ or $\mathrm{AB}=2.8 \mathrm{BD}$
From triangle $\mathrm{ABC}, \tan 50=\frac{A B}{100+B D}=\frac{2.8 B D}{100+B D}$

$$
\begin{aligned}
& 1.2=\frac{2.8 B D}{100+B D} \\
& 120+1.2 \mathrm{BD}=2.8 \mathrm{BD} \\
& 120=1.6 \mathrm{BD} \\
& \mathrm{BD}=\frac{120}{1.6}=75
\end{aligned}
$$

Height of hill $(\mathrm{AB})=2.8 \mathrm{BD}=2.8 \times 75=210 \mathrm{~m}$
24)

Let $\mathrm{AD}=\mathrm{h}, \mathrm{BD}=\mathrm{x}$ and $\mathrm{CD}=\mathrm{y}$
From triangle $\mathrm{ABD}, \tan \mathrm{B}=\frac{h}{a-x}$ and $\mathrm{x}=\mathrm{a}-\frac{h}{\tan B}$
From triangle $\mathrm{ACD}, \quad \operatorname{tanc}=\frac{h}{a-y}$ and $\mathrm{y}=\mathrm{a}-\frac{h}{\tan C}$
$\mathrm{x}+\mathrm{y}=\mathrm{a}-\frac{h}{\tan B}+\mathrm{a}-\frac{h}{\tan C}=\frac{a \tan B-h}{\tan B}+\frac{a \tan C-h}{\tan C}$ $\mathrm{a}=\frac{a \tan B \tan C-h \tan C+a \tan B \tan C-h \tan B}{\tan B \tan C}$
$a \tan B \tan C=a \tan B \tan C-h \tan C+a \tan B \tan C-h \tan B$
$h \tan C+h \tan B=a \tan B \tan C$
$h(\tan B+\tan C)=a \tan B \tan C$ and hence

$$
\mathrm{h}=\frac{a \tan B \tan C}{\tan B \tan C}
$$

Area of triangle $=1 / 2$ ah $=1 / 2 \times$ a $\times \frac{a \tan B \tan C}{\tan B \tan C}==\frac{a^{\wedge} 2 \tan B \tan C}{2 \tan B \tan C}$
Hence the proof

