SSLC MODEL EXAMINATION, FEBRUARY 2017-18

	1			CHEMIST	RY	OANSWER KEY			,	
Q No		ANSWER KEY							TOTAL	CHOICE
1	f								<u>1</u>	Any four
2	22.4	22.4							<u>1</u>	
3	Hot NaO	Hot NaOH solution							<u>1</u>	
4	Ester	İster							<u>1</u>	
5	For industrial purposes, ethanol is sometimes mixed with poisonous substances. The mixture so obtained is called denatured spirit								<u>1</u>	
6	a) $1s^2 2s^2 2p^6 3s^2 3p^1$								2	
	b) 13							1		
7	Element	Element Atomic Mass		mount Number of mole- ken in g		cules Number of atoms Volume at STP L				
	H ₂	1	4g	$\frac{(a)}{2 \times 6.022 \times 10^{23}}$		4 x 6.022 x10 ²³	(b) 2x 22.4 = <u>44.8</u>	1/2 1/2	2	
	Не	4	(c) <u>20 g</u>	5 x 6.022 x1	0 ²³	(d) $5 \times 6.022 \times 10^{23}$	112	1/2 1/2		
0	a) Na							1		
8	b) Cu	b) Cu							<u>2</u>	
9	Metal Ore Method of Refining the metal						1/2 1/2			
	Copper		(a) <u>Cuprite</u>		(b) Electrolytic refining			72 72	2	Any four
	Zinc		(c) <u>Calamine</u>			(d) <u>Distillation</u>				
	(a) Cement combines with water and sets into a hardened mass(setting of cement)									
10	(b) Cement combines with water and sets into a hardened mass . It is an <i>exothermic reaction</i> . Hence a <i>large amount of heat energy</i> is liberated Direct contact with the skin will lead to burning . To prevent this , workers wear gloves							1	2	
			(Question er	ror . 7 O ₂ is suita	able ir	stead of 5 O ₂)				
11	(a) 3.5 mols If 7 O ₂ is used (a) 2.5 mols If 5 O ₂ is used							1	<u>3</u>	
	(b) 224 L	(b) 224 L								
12	(a) Test tube containing powdered copper.When solids are made into small pieces or powder, their surface area increases.As a result the number of molecules undergoing effective collisions also increases.Hence the rate of reaction increases.								<u>3</u>	
	(b) Increase the temperature									
	(a) The amount NO ₂ will increase								<u>3</u>	
13	(b) Reduce the pressure of the system. According to Le – Cheltelier's principle , if the pressure of a system of gaseous reacting species is altered , the system will try to nullify the effect of that change. <i>The right side of the equation given has more gaseous moles than the left side . Decrease in pressure will favour the side with more gaseous moles</i> . That is , the reaction proceeds faster towards the right side if the pressure is decreased (<i>Or any other suitable response</i>)									

14	 (a) (i) Bauxite (Al₂O₃.2H₂O) (ii) Sodium aluminate(NaAlO₂)solution (iii) PrecipitateAl(OH)₃ (iv) Alumina (Al₂O₃) 	1/2 1/2 1/2 1/2	3	Any four				
	(b) Here, Oxygen is liberated at the Anode. It reacts with the carbon anode forming carbon dioxide. As a result, the anode gets consumed up. Hence Anode should be removed at regular intervals.	1						
15	 (a) Soda lime glass / Soda glass/ Soft glass Silicon dioxide (SiO₂) , Sodium carbonate (Na₂CO₃) Calcium carbonate (CaCO₃) 	1	<u>3</u>					
	(b) Cobalt oxide	1						
	(a) (A) [Ne] $3s^2 3p^5$, (D) [Ar] $3d^{10}4s^24p^5$	1	- <u>4</u>	Any four				
	(b) B [Ar]4s ¹	1						
16	(c) \mathbf{B} [Ar]4s ¹	1						
	(d) [Ar]3d ³	1						
	CH ₃ CH ₃							
	(a) CH ₃ -CH - CH-CH ₃	1						
17	(a) CH ₃ -CH-CH ₃ (b) 2- Methyl pentane / 3- Methyl pentane	1	<u>4</u>					
	(c) -CHO	1						
	(d) Hex - 2 - yne	1						
	(a) $A = Zinc (Zn) = Nickel (Ni)$	1	- - - <u>4</u>					
	(b) From Zinc electrode to Nickel electrode	1						
	(c) Nickel (Ni)	1						
18	(d) $Zn \rightarrow Zn^{2+} + 2\hat{e}$	1						
	$Ni^{2+} + 2e \rightarrow Ni$	1						
	$\overline{Zn + Ni^{2+} \rightarrow Zn^{2+} + Ni}$							
	$\begin{array}{c} \textbf{Z}_{III} + 1 \forall I \rightarrow \textbf{Z}_{III} + 1 \forall I \\ \textbf{(a)} \text{ CH}_3\text{-}\text{O}\text{-}\text{CH}_2\text{-}\text{CH}_3 \text{, CH}_3\text{-}\text{CH}_2\text{-}\text{CH}_2\text{-}\text{OH} \end{array}$	1	- <u>4</u>					
	(a) CH ₃ -O-CH ₂ -CH ₃ , CH ₃ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₃	1						
10	(c) CH ₃ -COOH	1						
19	(d) OH	1						
	CH ₃ -CH ₂ -CH-CH ₃ , CH ₃ -CH ₂ -CH ₂ -CH ₂ -OH							
	(A)							
	(a) (i) CH_3 - CH_2 - CH_3 + $Cl_2 \rightarrow CH_3$ - CH_2 - Cl_2 - Cl + HCl	1						
	(ii) CH ₃ -CH=CH ₂ + Cl ₂ \rightarrow CH ₃ -CH <i>Cl</i> -CH ₂ - <i>Cl</i>	1	_ <u>4</u>					
20	(B)							
40	(b) Addition	1						
		1						
	Prepared by Unmesh B , Govt. VHSS Kallara , Thiruvananthapuram							