SHRI KRISHNA ACADEMY

NEET, JEE AND BOARD EXAM (10, +1, +2) COACHING CENTRE SBM SCHOOL CAMPUS, TRICHY MAIN ROAD, NAMAKKAL CELL: 99655-31727, 94432-31727

PUBLIC EXAMINATION - MARCH - 2020

18.03.2020

SUBJECT: PHYSICS

STD: XI

TENTATIVE ANSWER KEY

MARKS: 70

Q.N	SEC'	rion-i	MARKS
	CODE – A	CODE - B	
1	a) $\frac{\hat{\iota}+\hat{j}}{\sqrt{2}}$	b) inertia of direction	1
2	c) 0.017 m to 17m	c) $\frac{3}{2}k$	1
3	d) 1.0 m	d) 0.28%	1
4	b) 1.93kms ⁻¹	a) Speed	1
5	a) Speed	b) 1032	1
6	d) 0.28%	c)	1
7	d) 20m	d) 1.0 m	1
8	b) inertia of direction	a) $\frac{\hat{\iota}+\hat{j}}{\sqrt{2}}$	1
9	d) 26.8%	d) ML ²	1
10	c) $\frac{3}{2}k$	d) 20m	1
11	d) ML ²	c) 0.017 m to 17m	1
12	c)	d) $\frac{1}{2}$ Mr ²	1
13	b) $\sqrt{3}$: $\sqrt{2}$	d) 26.8%	1
14	b) 1032	b) 1.93kms ⁻¹	1
15	d) $\frac{1}{2}$ Mr ²	b) $\sqrt{3}$: $\sqrt{2}$	1

Q.N	SECTION-II	MARKS
16	Dimensional formula for $\frac{1}{2}mv^{2} = [M][LT^{-1}]^{2} = [ML^{2}T^{-2}]$	1
	Dimensional formula for	
	$mgh = [M][LT^{-2}][L] = [ML^{2}T^{-2}]$ $[ML^{2}T^{-2}] = [ML^{2}T^{-2}]$ Both sides are dimensionally the	1
	same, hence the equations $\frac{1}{2}mv^2 = mgh$ is dimensionally correct.	
	Distance and displacement:	
17	Distance is the actual path length travelled by an object in the give interval of time during the motion. It is a positive scalar quantity.	1
	Displacement is the difference between the final and initial positions of the object in a given interval of time. It is a vector quantity.	1
	If the orbits of the Moon and Earth lie on the same plane, during full	
10	Moon of every month, we can observe lunar eclipse. If this is so during	2
18	new Moon we can observe solar eclipse. But Moon's orbit is tilted 5° with	Z
	respect to Earth's orbit. Due to this 5° tilt, only during certain periods	
	of the year, the Sun, Earth and Moon align in straight line leading to	
	When no external torque acts on the body, the net angular momentum	
19	of a rotating rigid body remains constant. This is known as law of	
	conservation of angular momentum.	
	(OR)	2
	dL o L	
	$\tau = 0$ then, $\frac{1}{dt} = 0$; L = constant (only formula 1 mark)	
	(only formula 1 mark)	
20	It is defined as the ratio of velocity of separation (relative velocity) after collision to the velocity of approach (relative velocity) before collision. (OR)	2
	$e = \frac{\text{velocity of separation}(\text{after collision})}{\text{velocity of approach}(\text{before collision})}$	
	verocity of approach (before conision)	
	$=\frac{(V_2 - V_1)}{(11 - 11)}$	
	$(u_1 - u_2)$	

21	The efficiency of heat engine is given by	1
	$\eta = 1 - \frac{Q_L}{Q_H}$	T
	$\eta = 1 - \frac{300}{500} = 1 - \frac{3}{5}$	1
	$\eta=1-0.6=0.4$	1
22	The heat engine has 40% efficiency, implying that this heat engine converts only 40% of the input heat into work. As the root mean square speed of hydrogen is much less than that of	
	nitrogen, it easily escapes from the earth's atmosphere.	2
23	 Pressure Temperature Density Moisture Wind 	4 X ½ = 2
24	$T \propto \sqrt{l}$	
	$1 = \text{constant} \times \sqrt{l}$	1
	$\frac{T_f}{T_i} = \sqrt{\frac{l + \frac{11}{100}l}{l}} = \sqrt{1.44} = 1.2$	1
	Therefore, $T_{f} = 1.2 T_{i} = T_{i} + 20\% T_{i}$	
Q.N	SECTION-III	MARKS
25	The word RADAR stands for radio detection and ranging. A radar can	1
	be used to measure accurately the distance of a nearby planet such as	
	after reflection from the planet are detected by the receiver	
	 By measuring, the time interval (t) between the instants the radio 	
	waves are sent and received, the distance of the planet can be	
	determined as	1
	Speed = distance travelled / time taken	
	(Speed is explained in unit 2)	
	 Distance(u) = Speed of radio waves × time taken where v is the speed of the radio wave. As the time taken (t) is for the 	
	distance covered during the forward and backward path of the radio	1
	waves, it is divided by 2 to get the actual distance of the object. This	
	method can also be used to determine the height, at which an	
	aeroplane flies from the ground.	

26	Given: Initial speed of object, $u = 5 \text{ ms}^{-1}$, angle of projection, $\theta = 30^{\circ}$, Height $h = ?$, Range	e R = ?
	Solution: Height $h = \frac{u^2 \sin^2 \theta}{16} = \frac{u^2 \sin^2 \theta}{16} = \frac{5^2 \sin^2 30^0}{16} = \frac{25 x \frac{1^2}{2}}{16} = \frac{25}{2} x \frac{1}{2} = 0.318 \text{ m}$	1 1⁄2
	2g $2g$ $2x9.8$ $2x9.8$ 19.6 4 0.510 m	
	Range R = $\frac{u^2 \sin 2\theta}{10} = \frac{5^2 \sin 2(30^0)}{10} = \frac{25 \times \frac{\sqrt{3}}{2}}{10} = \frac{25 \times 1.732}{10} = 2.209 \text{ m} \approx 2.21 \text{ m}$	1½
	g 9.8 9.8 9.8 2	
27	(with out unit reduce 1 mark for both)	
27	In the stops his hands soon after catching the ball, the ball comes to meet event which has	0
	rest very quickly.	
	It means that the momentum of the ball is brought to rest very	3
	quickly. So the average force acting on the body will be very large	e.
	Due to this large average force, the hands will get hurt. To avoid	
	getting hurt, the player brings the ball to rest slowly.	
28	Law of orbits:	
	Each planet moves around the Sun in an elliptical orbit with the Sun a	t one
	of the foci.	
	Law of area:	. in
	The radial vector (line joining the sun to a planet) sweeps equal areas	
	Law of period:	1
	The square of the time period of revolution of a planet around the Sur	ı in
	its elliptical orbit is directly proportional to the cube of the semi-major a	ixis
	of the ellipse.	1
	$T^2 \sim s^3$	
	$1 \propto a$	
	T^2	
	$\frac{1}{3} = constant$	
20		
29	S.No. Transverse waves Longitudinal waves	
	1. The direction of vibration The direction of vibration of of particles of the medium is	1
	is perpendicular to the parallel to the direction of	
	direction of propagation of propagation of waves	
	waves.	
	2. The disturbances are in The disturbances are in the	1
	the form of crests and form of compressions and	
	troughs. rarefactions.	
	3. Transverse waves are Longitudinal waves are	
	possible in elastic medium. possible in all types of media	1
	(solid, liquid and gas).	
30	Due to difference in pressure, between straw and atmosphere, soft dr	ink
	raises in the straw. (OR)	
	When we suck through the straw, the pressure inside the straw become	nes 3
	less than the atmospheric pressure. Due to the pressure difference, th	e
	soft drink rises in the straw and we are able to take the soft drink easily	ily.
	(Any relevant answer)	

31	It is a special case of forced vibrations where the frequency of	
	external periodic force (or driving force) matches with the natural	2
	frequency of the vibrating body (driven)	-
	• As a result the oscillating body begins to vibrate such that its	
	amplitude increases at each step and ultimately it has a large	
	amplitude	
	• Such a phonomonon is known as resonance and the corresponding	
	Such a phenomenon is known as resonance and the corresponding	
	 Interview of the second second	
	Example The breaking of glass due to sound	1
32	The process should proceed at an extremely slow rate.	1
	The system should remain in mechanical, thermal and chemical	
	equilibrium state at all the times with the surroundings, during the	1
	process.	
	No dissipative forces such as friction, viscosity, electrical resistance	
	should be present.	1
33	Torque $\vec{\tau} = \vec{r} \times \vec{F}$	1
	$\vec{\tau} = 7 4 -2$	1
	4 -3 5	
	$\vec{\tau} = \hat{i}(20-6) - \hat{j}(35+8) + \hat{k}(-21-16)$	
	$\vec{\tau} = (14\hat{i} - 43\hat{j} - 37\hat{k}) N m$	1
	(without unit reduce ½ mark)	
Q.N	SECTION-IV	MARKS
34	J.	
(a)		1
	$\overline{V_1}$ $\overline{V_2}$ $\overline{V_2}$	
	• Let the directions of position and vale site wasters shift through the	
	• Let the directions of position and velocity vectors sint through the	
	Same angle 0 in a small interval of time Δt . For unitor in circular motion $\alpha = \overline{\alpha} = \overline{\alpha} $ and $y = \overline{\alpha} = \overline{\alpha} $	
	• Incurrent, $r = r_1 = r_2 $ and $v = v_1 = v_2 $	
	• If the particle moves from position vector r_1 to r_2 the displacement is	
	given by $\Delta r = r_2 - r_1$ and the change in velocity from v_1 to v_2 is given by $\Delta \vec{v} = \vec{v}$, \vec{v}	1
	by $\Delta v = v_2 - v_1$.	
	• The magnitudes of the displacement Δr and of Δv satisfy the following	
	relation $\frac{dr}{r} = -\frac{dr}{v} = \theta$	
	• Here the negative sign implies that Δv points radially inward, towards	
	the center of the circle.	

	$\Delta v = -v \left(\frac{\Delta r}{r}\right)$ $\Delta v = v \left(\Delta r\right) = v^{2}$	2
	$a = \frac{1}{\Delta t} = \frac{1}{r} \left(\frac{1}{\Delta t} \right) = \frac{1}{r}$	
	\bigstar For uniform circular motion $u = \alpha r$ where α is the angular velocity	1
	• For uniform circular motion $v = \omega T$, where ω is the angular velocity	1
	be written as $a = -x^2 r$	
24	be written as $a = -\omega 2r$	
34 (b)	Work-kinetic energy theorem:	1
(D)	The work done by the force on the body changes the kinetic energy	1
	of the body. This is called work-kinetic energy theorem.	
	The work (W) done by the constant force (F) for a displacement (s) in the	
	same direction is,	
	W=FS	
	F = ma	
	$\mathbf{F} = \mathbf{IIIa}$	
	$v^2 = u^2 + 2as$	
	$x^2 - x^2$	1
	$a = \frac{v - u}{v}$	1
	2s	
	$\left(v^2 - u^2\right)$	
	$F = m \left \frac{v - u}{1 - v} \right $	
	(2s)	
	$W = m\left(\frac{v^2}{2s}s\right) - m\left(\frac{u^2}{2s}s\right)$	
	$W = \frac{1}{2}mv^{2} - \frac{1}{2}mu^{2}$	
	The expression for kinetic energy: $(1 - 2)$	
	The term $\left(\frac{1}{2}mv^2\right)$ in the above equation is the kinetic energy of the body	1
	of mass (m) moving with velocity (v).	
	$KE = \frac{1}{2}mv^2$	
	Kinetic energy of the body is always positive.	
	$\Delta KE = -mv^2mu^2$	1
	Thus, $W = \Delta K E$	
	1. If the work done by the force on the body is positive then its kinetic	1
	energy increases.	
	2. If the work done by the force on the body is negative then its kinetic	
	energy decreases.	
	3. If there is no work done by the force on the body then there is no	
	change in its kinetic energy, which means that the body has moved at	
	constant speed provided its mass remains constant.	

35
(a) A number of measured quantities may be involved in the final calculation
of an experiment. Different types of instruments might have been used for
taking readings. Then we may have to look at the errors in measuring
various quantities, collectively. The error in the final result depends on
(i) The errors in the individual measurements
(ii) On the nature of mathematical operations performed to get the final
result. So we should know the rules to combine the errors.
Error in the division or quotient of
two quantities
Let
$$\Delta A$$
 and ΔB be the absolute errors in
the two quantities A and B respectively.
Consider the quotient, $Z = \frac{A}{B}$
The error ΔZ in Z is given by
 $Z \pm \Delta Z = \frac{A \pm \Delta A}{B \pm \Delta B} = \frac{A\left(1\pm\frac{\Delta A}{A}\right)}{B\left(1\pm\frac{\Delta B}{B}\right)}$
 $= \frac{A}{B}\left(1\pm\frac{\Delta A}{A}\right)\left(1\pm\frac{\Delta B}{B}\right)^{-1}$
or $Z \pm \Delta Z = Z\left(1\pm\frac{\Delta A}{A}\right)\left(1\pm\frac{\Delta B}{B}\right)$ [using
 $(1+x)^n = 1+nx$, when $x < <1$]
Dividing both sides by Z, we get,
 $1\pm\frac{\Delta Z}{Z} = \left(1\pm\frac{\Delta A}{A}\right)\left(1\pm\frac{\Delta B}{B}\right)$
 $= 1\pm\frac{\Delta A}{A}\pm\frac{\Delta B}{B}\pm\frac{\Delta A}{A}\cdot\frac{\Delta B}{B}$
As the terms $\Delta A/A$ and $\Delta B/B$ are small,
their product term can be neglected.
The maximum fractional error in Z is
given by $\frac{\Delta Z}{Z} = \left(\frac{\Delta A}{A} + \frac{\Delta B}{B}\right)$ (1.6)

35
(b) Work done in an adiabatic process:
Consider
$$\mu$$
 moles of an ideal gas enclosed in a cylinder having perfectly non
conducting walls and base. A frictionless and insulating piston of cross
sectional area A is fitted in the cylinder Let W be the work done when the
system goes from the initial state (*P_k*,*V_i*?) to the final state (*P_k*,*V_i*?)
adiabatically.
 $W = \int_{V_i}^{V'_i} PdV$
By assuming that the adiabatic process
occurs quasi-statically, at every stage the
ideal gas law is valid. Under this condition,
the adiabatic equation of state is $PV^{\tau} =$
constant (or)
 $P = \frac{\text{constant}}{V_i} \text{ can be substituted in the}$
equation (8.40), we get
 $\therefore W_{adia} = \int_{V_i}^{V} \frac{\text{constant}}{V_i^{\tau-1}} dV$
 $= \text{constant} \left[\frac{V^{-\gamma+1}}{V_i^{\tau+1}} - \frac{1}{V_i^{\tau+1}}\right]^{V'_i}$
 $= \frac{1}{1-\gamma} \left[\frac{\text{constant}}{V_i^{\tau+1}} - \frac{-1}{V_i^{\tau+1}} \right]$
But, $P_iV_i^{\tau} = P_iV_i^{\tau} = \text{constant}$.
 $\hat{V}_{wdim} = \frac{1}{1-\gamma} \left[\frac{P_iV_i^{\tau}}{V_i^{\tau+1}} - \frac{P_iV_i^{\tau}}{V_i^{\tau+1}} \right]$
 $W_{adia} = \frac{1}{1-\gamma} \left[\frac{P_iV_i^{\tau}}{V_i^{\tau+1}} - \frac{P_iV_i^{\tau}}{V_i^{\tau+1}} \right]$
From ideal gas law.
 $P_iV_i = \mu RT_i$ and $P_iV_i = \mu RT_i$
Substituting in equation (8.41), we get
 $\hat{W}_{adia} = \frac{\mu R}{1-1} \left[T_i T_i \right]$ (8.42)
In adiabatic expansion, work is done on the gas. i.e., W_{adia} is negative. As $T_i > T_i$, the gas
cools during adiabatic expansion.
In adiabatic compression, work is done on the gas. i.e., W_{adia} is negative. As $T_i < T_i$, the gas
cools during adiabatic expansion.

$$g' = GM \frac{R_{q}\left(1 - \frac{d}{R_{s}}\right)}{R_{s}^{2}}$$

$$g' = GM \frac{\left(1 - \frac{d}{R_{s}}\right)}{R_{s}^{2}}$$

$$g' = GM \frac{\left(1 - \frac{d}{R_{s}}\right)}{R_{s}^{2}}$$

$$g' = g\left(1 - \frac{d}{R_{s}}\right) \quad (6.50)$$
Here also $g' < g$. As depth increases, g'
decreases. It is very interesting to know that
acceleration due to gravity is maximum on
the surface of the Earth but decreases when
we go either upward or downward.
$$(i)$$

$$A + \log h + h + \frac{R_{s}}{h} = \frac{9}{2}$$

$$\frac{3}{h} = \frac{2}{\left(1 + \frac{R_{s}}{h_{s}}\right)^{2}} = \frac{3}{\left(\frac{1}{2} + \frac{R_{s}}{h_{s}}\right)^{2}} = \frac{3}{\frac{N_{s}}{2}} = \frac{3}{\frac{$$

There fore $\frac{g_1'}{g_1'} = \frac{4g/q}{g/2} = \frac{4g}{q} \times \frac{2}{g} = \frac{8}{q}$ 1 Note: Binomial theorem not applicable in 1st case as h= R/2 when h er Binomial theorem is applicable. Let us consider a cyclist negotiating a circular level road (not banked) of 36 **(b)** radius r with a speed v. The cycle and the cyclist are considered as one system with mass m. The center gravity of the system is C and it goes in a circle of radius r with center at O. Let us choose the line OC as X-axis and the vertical line through O as Z-axis The system as a frame is rotating about Z-axis. The system is at rest in this rotating frame. The forces acting on the system are, gravitational force (mg), (i) (ii) normal force (N), (iii) frictional force (f) and 1 centrifugal force (iv) As the system is in equilibrium in the rotational frame of reference, the net external force and net external torque must be zero. 1 For rotational equilibrium, $\vec{\tau}_{net} = 0$ $-mgAB + \frac{mv^2}{r}BC = 0$ $mgAB = \frac{mv^2}{r}BC$ $mg AC \sin \theta = \frac{mv^2}{r} AC \cos \theta$ $\tan \theta = \frac{v^2}{rg}$ $\theta = \tan^{-1} \left(\frac{v^2}{r \pi} \right)$ 3

37
1 Let us consider a uniform rod of mass (M) and length (*l*). Let us find an expression for moment of inertia of this rod about an axis that passes through the center of mass and perpendicular to the rod. First an origin is to be fixed for the cordinate systems of that it coincides with the center of mass, which is also the geometric center of the rod. The rod is now along the x axis. We take an infinitesimally small mass (dm) at a distance (x) if from the origin. The moment of inertia (dl) of this mass (dm) about the axis is, dl=(dm)x²

$$\lambda = \frac{M}{\ell} \quad dm = \lambda \, dx = \frac{M}{\ell} \, dx$$

$$I = \int dI = \int (dm)x^2 = \int \left(\frac{M}{\ell} \, dx\right)x^2$$

$$I = \frac{M}{\ell} \int x^2 dx$$

$$I = \frac{M}{\ell} \left[\frac{\ell^2}{24} - \left(-\frac{\ell^2}{24}\right)\right] = \frac{M}{\ell} \left[\frac{\ell^3}{24} + \frac{\ell^2}{24}\right]$$

$$I = \frac{M}{\ell} \left[2\left(\frac{\ell^3}{24}\right)\right]$$

$$I = \frac{M}{\ell} \left[2\left(\frac{\ell^3}{24}\right)\right] = \frac{M}{\ell} \left[\frac{\ell^3}{24} + \frac{\ell^2}{24}\right]$$

$$I = \frac{M}{\ell} \left[2\left(\frac{\ell^3}{24}\right)\right]$$

$$I = \frac{M}{\ell} \left[2\left(\frac{\ell^3}{24}\right)\right] = \frac{M}{\ell} \left[\frac{\ell^3}{24} + \frac{\ell^3}{24}\right]$$

$$I = \frac{M}{\ell} \left[2\left(\frac{\ell^3}{24}\right)\right]$$

$$I = \frac{M}{\ell} \left[2\left(\frac{\ell^3}{24}\right)\right] = \frac{M}{\ell} \left[\frac{\ell^3}{24} + \frac{\ell^3}{24}\right]$$

$$I = \frac{M}{\ell} \left[2\left(\frac{\ell^3}{24}\right)\right]$$

$$I = \frac{L^3}{\ell} \left[2\left(\frac{\ell^$$

		1
	oscillator is constant. But in reality, in a medium, due to the presence of	
	friction and air drag, the amplitude of oscillation decreases as time	1 1/2
	progresses. It implies that the oscillation is not sustained and the energy of	- /2
	the SHM decreases gradually indicating the loss of energy. The energy lost is	
	absorbed by the surrounding medium. This type of oscillatory motion is	
	known as damped oscillation.	
	Examples:	
	(i) The oscillations of a pendulum or pendulum oscillating inside an	
	oil filled container	
	(ii) Electromagnetic oscillations in a tank circuit	
	(iii) Osicllations in a dead beat and ballistic galvanometers.	
	Maintained oscillations:	
	While playing in swing, the oscillations will stop after a few cycles, this is	1
	due to damping. To avoid damping we have to supply a push to sustain	
	oscillations. By supplying energy from an external source, the amplitude of	
	the oscillation can be made constant. Such vibrations are known as	
	Inamianeu vibration of a tuning forly gotting ar area from a bettern an	
	from external power supply	
	Forced oscillations:	
	Any oscillator driven by an external periodic agency to overcome the	
	damning is known as forced oscillator or driven oscillator. In this type of	1
	vibration the body executing vibration initially vibrates with its natural	
	frequency and due to the presence of external periodic force the body later	
	vibrates with the frequency of the applied periodic force. Such vibrations are	
	known as forced vibrations.	
	Example : Sound boards of stringed instruments.	
38	(i) Triangulation method for the height of an accessible object	
(a)	Let $AB = h$ be the height of the tree or tower to be measured. Let C be the	1⁄2
	point of observation at distance <i>x</i> from B. Place a range finder at C and	
	measure the angle of elevation, $\angle ACB = \theta$	
	From right angled triangle ABC,	1
	AB h	
	$-\tan\theta = \frac{1}{BC} = \frac{1}{x}$	
	(or)	
	1111	
	height $h = x \tan \theta$	
	Knowing the distance <i>x</i> , the height h can	
	be determined.	

	(ii) $h = x \tan \theta$ $= 50 \times \tan 60^{\circ}$ $= 50 \times 1.732$	1/2
	h = 86.6 m	
38 (b)	Consider a sphere of radius r which falls freely through a highly viscous liquid of coefficient of viscosity η . Let the density of the material of the sphere be ρ and the density of the fluid be σ .	1∕2
	DIAGRAM	1
	Gravitational force acting on the sphere,	
	$F_G = mg = \frac{4}{3}\pi r^3 \rho g$ (downward force)	
	Up thrust, $U = \frac{4}{3}\pi r^3 \sigma g$ (upward force)	1
	viscous force $F = 6\pi\eta rv_t$	-
	At terminal velocity v_{t} .	
	downward force = upward force	1⁄2
C	$F_G - U = F \Rightarrow \frac{4}{3}\pi r^3 \rho g - \frac{4}{3}\pi r^3 \sigma g = 6\pi\eta r v_t$	
	$v_t = \frac{2}{9} \times \frac{r^2(\rho - \sigma)}{\eta} g \Rightarrow v_t \propto r^2$	2
	Here, it should be noted that the terminal speed of the sphere is directly	
	proportional to the square of its radius. If σ is greater than ρ , then the term (α, σ) becomes negative leading to a negative terminal velocity. That	
	is why air bubbles rise up through water or any fluid. This is also the reason for the clouds in the sky to move in the upward direction.	