Strictly Confidential: (For Internal and Restricted use only) Secondary School Examination March 2019 Marking Scheme – SCIENCE (SUBJECT CODE 086) (PAPER CODE – 31/1/1)

General Instructions: -

- 1. You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully. **Evaluation is a 10-12 days mission for all of us. Hence, it is necessary that you put in your best efforts in this process.**
- Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and marks be awarded to them.
- 3. The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.
- 4. If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left-hand margin and encircled.
- 5. If a question does not have any parts, marks must be awarded in the left hand margin and encircled.
- 6. If a student has attempted an extra question, answer of the question deserving more marks should be retained and the other answer scored out.
- 7. No marks to be deducted for the cumulative effect of an error. It should be penalized only once.
- 8. A full scale of marks 1 to 80 has to be used. Please do not hesitate to award full marks if the answer deserves it.
- 9. Every examiner has to necessarily do evaluation work for full working hours i.e. 8 hours every day and evaluate 25 answer books per day.
- 10. Ensure that you do not make the following common types of errors committed by the Examiner in the past:-
- Leaving answer or part thereof unassessed in an answer book.
- Giving more marks for an answer than assigned to it.
- Wrong transfer of marks from the inside pages of the answer book to the title page.
- Wrong question wise totaling on the title page.
- Wrong totaling of marks of the two columns on the title page.
- Wrong grand total.
- Marks in words and figures not tallying.
- Wrong transfer of marks from the answer book to online award list.
- Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect answer.)
- Half or a part of answer marked correct and the rest as wrong, but no marks awarded.
- 11. While evaluating the answer books if the answer is found to be totally incorrect, it should be marked as (X) and awarded zero (0) Marks.
- 12. Any unassessed portion, non-carrying over of marks to the title page, or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously.
- 13. The Examiners should acquaint themselves with the guidelines given in the Guidelines for spot Evaluation before starting the actual evaluation.
- 14. Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title page, correctly totaled and written in figures and words.
- 15. The Board permits candidates to obtain photocopy of the Answer Book on request in an RTI application and also separately as a part of the re-evaluation process on payment of the processing charges.

<u>SET 31/ 1 / 1</u>

Q.No	Value Point/Expected Answer	Value	Total Marks
1.	Section 'A' Detect the presence or direction of current.	1	1
2.	It burns completely/ burns without smoke / high calorific value.	1	1
3.	Section 'B' Modern periodic table consists of groups and periods. Where number of valence electrons determines the group and number of shells determines the period .	1, 1	
	OR		
	 (a) Group – 14, Period – 3 (b) Silicon Non – metallic / poor conductor of electricity (or any other property) 	1/2 + 1/2 1/2 1/2	2
4.	 Aerobic / Presence of oxygen Product – CO₂ and H₂O Anaerobic / Absence of oxygen Product – lactic acid 	Y ₂ Y ₂ Y ₂ Y ₂	2
5.	 Power of accommodation – Ability of eye lens to adjust its focal length. Curvature increases/lens becomes thick 	1 1	2
6.	 SECTION C White silver chloride turns grey in sunlight 2AgCl Sunlight 2 Ag + Cl₂ Decomposition reaction / Photolytic decomposition 	1 1 1	
	OR		
	a) Displacement reaction $Zn + 2 AgNO_3 \longrightarrow Zn (NO_3)_2 + 2 Ag$	½ 1	
	b) Double displacement reaction 2 KI + Pb (NO ₃) ₂ → PbI ₂ + 2KNO ₃ (deduct ¹ / ₂ mark for non balanced equation)	½ 1	3

-	1			
7.	• Acid – Hydrochloric acid/HCl		1/2 1/2	
	Base – Sodium hydroxide/NaOH		1/	
	Neutral Salt		1/2 1/2	
	When it forms brown crystals combi	ned with impurities	⁷²	3
	• Drying up of seas		1	3
8.	i. A_2O – Valency of group one is 1 and of oxygen is 2		1/2+1/2	
0.	i. $A_2O = Valency of group one is 1 and of oxygen is 2ii. AX_3 = Valency of group 13 is 3 and of halogen is 1$		1/2+1/2	
		2 is 2 and of element B of group seventeen	1/2+1/2	3
	is 1.	2 is 2 and of clement B of group sevencen	/2./2	,
9.	Arteries – No valves/thick walled/carry oxygenated blood/carry blood away		1	
	from heart.			
		ed/carry deoxygenated blood/carry blood	1	
	towards heart.	5 50 5		
	• Capillaries – very fine/mixed blood/	found in tissues/sites for material exchange.	1	3
10.	Receptor Cells of eyes/retina>	Sensory Neuron Brain / CNS		
	Pupil contracts / Eye lids close/blink	– Eye Muscles – Motor Neuron	½x6	3
	1 5	5		
	(Note: If a child writes spinal cord in place of brain give full credit to him/her)			
11.				
	Plant hormones – Chemical substances which help the plant to coordinate		1	
	growth and development			
	i) Auxins/ Gibberellins			
	ii) Cytokinins			
	iii) Abscisic Acid / ABA			
	iv) Auxins/ Gibberellins		½ x4	3
12.	• Pea Plant / Garden pea / Pisu	m sativum	1	
	• F_1 – All tall; F_2 - Tall and sho	rt	1/2 + 1/2	
	• Ratio – Tall : Short			
	3:1 /	1:2:1	1	
	OR			
	Acquired Traits	Inherited Traits		
	1. These traits are not transferred from	1. These traits are transferred from one		
	one generation to the next generation	generation to the next	1	
	2. They do not bring about change in	2. They bring about changes in DNA		
	DNA	2. They offing about changes in DNA	1	
	Example: Acquiring any skill	Example: Eye colour		
		r relevant point and example)	1	3
	(or any other relevant point and example)			
13.				
	1		1	1

	by losing electrons ions by gaining electrons	1x3	
	 b) i) Metals have loosely bound electrons / Loose electrons easily / free electrons ii) Molten iron produced during reaction joins the cracked machine parts. 	1 1	5
17.	 C₂H₅OH, Ethanol/Ethyl alcohol Good solvent; used in medicines (Any other) i) 2C₂H₅OH + 2 Na → 2C₂H₅ONa + H₂ 	$\frac{1}{2} + \frac{1}{2}$ $\frac{1}{2} + \frac{1}{2}$	
	Sodium ethoxide	1/2	
	ii) C_2H_5OH Hot Conc. $H_2SO_4 \longrightarrow CH_2=CH_2+H_2O$	1	
	443 K Ethene	1/2	
	OR		
	CH ₄ /Simplest hydrocarbon	1∕₂	
	H + x C x + H	1	
	Covalent bonds	1/2	
	i) No ions or charged particles are formedii) Due to weak covalent bonds	1 1	
	• Carbon dioxide and water are produced/ $CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O$	1	5
18.	Pollination – Transfer of pollen from anther / stamen to stigma of the flower	1	
	 Type of Pollination – a) Self pollination – Transfer of pollen from anther / stamen to stigma occurs in the same flower 	1/2 + 1/2	
	b) Cross pollination – Pollen is transferred from anther / stamen of one flower to stigma of another flower	1/2 + 1/2	
	 Agents of pollination – Wind, Water, Insects and Animals (any 2) A tube grows out of the pollen grain and travels through the style, to reach the female germ cell in the ovary to cause fertilization 	½ + ½ 1	
	OR		
(a)	 Female reproductive system Name of parts – 	1/2	

	1: Fallopian tube/Oviduct		
	2: Ovary		
	3: Uterus		
	4: Cervix		
	5: Vagina	1/ v F	
(b)		½ x 5	
(5)	Method to avoid pregnancy Advantages	1/2	
	 Advantages Proper gap between two pregnancies 		
	- Avoiding unwanted pregnancy		
	- Keeping population under control		5
10		½ x 3	
19.	i) $u = -60 \text{ cm}$ $f = -30 \text{ cm}$ $v = ?$		
	1_1 1		
	$\frac{1}{f} = \frac{1}{v} - \frac{1}{u}$		
		1/2	
	$\therefore \frac{1}{\nu} = \frac{1}{f} + \frac{1}{u}$		
	$= \frac{1}{(-30 \ cm)} + \frac{1}{(-60 \ cm)} = \frac{-3}{60}$		
	$(-30 \ cm) (-60 \ cm) 60$		
	\therefore v = -20 cm	1	
	$m = v/u = \frac{-20 \ cm}{-60 \ cm} = \frac{1}{3}$		
	ii) Nature:- Virtual	1/2 1/2	
	Position:- 20 cm from lens on the same side as the object	1/2 1/2	
	Size:- Diminished	1/2 1/2	
	Erect/Inverted:- Erect	1/2	
	(iii)		
	A T		
	T		
	B F2 030 cm 10 F 2F		
	60 cm /2		
		1	5
20.	a)		

r			r	
	$=\frac{6}{24} \times 4 = 1 \text{ V}$		1	F
			1	5
	d) P= VI			
	$= 5 \text{ V x} \frac{6}{24} \text{ A} = 1.25 \text{ W}$			
21.	• A coil of many turns of insulated copper w	vire wrapped closely in the shape of a	1	
	cylinder			
	•			
	(i)	the second s		
			1	
	ii)			
			1	
	Distinguishing features – Solenoid	Don Magy at		
		Bar Magnet o effect of current on field.		
		trength cannot be changed		
	changing the current	and the second sec		
		irection is fixed and cannot be		
	the direction of current through it.	rsed.		
		(Any two features)	2	5

22.	Section E	1/	
	• Test Tube A	1/2 1/2	
	• It changes the colour from blue to red Hydrochloric acid turns blue litmus red.	1	
	Trydroemone acta turns olde nunus red.		
	OR		
	Brisk effervescence is produced	4	
	• $Na_2CO_3 + 2HCl \rightarrow 2 NaCl + H_2O + CO_2$	1	2
23.	In test tube A	1	
	As distilled water contains no salts	1	2
24.	Image: Constraint of the second of the se	1 ½ x 2	
	• Drawing in proper sequence Labelling – Bud	1	2
25.	Substance taken: KOH	1/2	
	• Function: It absorbs CO ₂ produced by the germinating seeds	1/2	
	Consequence: The water level rises in the test tube dipped in the beaker / partial vacuum is created.	1	2
	r		

26.	• Potential difference (V) is directly proportional to current (I) or V∝I	1	
	Method: Finding slope of the graph	1	
	OR		
	• Measure the zero error	1	
	• Value of zero error should be adjusted to the observed values	1	2
27.	Precautions:		
	1) Lens should be held in vertical position with its faces parallel to the screen		
	2) Clear and sharpest image should be obtained by adjusting the position of lens		
	3) Three observations should be taken at least.		
	4) Base of lens, screen and measuring scale should be in straight line	½ x 4	2
	(or any other)		