MARKING SCHEME SAMPLE QUESTION PAPER 2019-20 CLASS XII (BIOLOGY)

TIME 3 HOURS

MM 70

Leydig cells mniocentesis Cell-mediated immune response and iv P enzyme is Restriction endonuclease and Q enzyme is ligase Sal I	1 1 1 1 1 1
Cell-mediated immune response and iv Penzyme is Restriction endonuclease and Q enzyme is ligase	1
Cell-mediated immune response and iv Penzyme is Restriction endonuclease and Q enzyme is ligase	1
and iv Penzyme is Restriction endonuclease and Q enzyme is ligase	1
enzyme is Restriction endonuclease and Q enzyme is ligase	
enzyme is Restriction endonuclease and Q enzyme is ligase	
Sal I	1
	ł
Habitat loss and fragmentation	1
Section B	L
ysted <i>Amoeba</i> divides by multiple fission / produces amoeba or pseudopodiospores /cvst wall	2
OR	
mule-asexual reproductive structure in sponges $(\frac{1}{2}+\frac{1}{2}=1 \text{ Mark})$	
idia-asexual reproductive structure in <i>Penicillium</i> .(or any other correct example)	
$(\frac{1}{2}+\frac{1}{2} = 1 \text{ Mark})$	
, Cu7, Multiload 375 (Any two) $(\frac{1}{2} \text{ and } \frac{1}{2} = 1 \text{ Mark })$	2
ons released suppresses sperm motility and the fertilizing capacity of sperms.	
$(\frac{1}{2} + \frac{1}{2} = 1 \text{ Mark })$	
trol crosses cannot be performed in human beings. Alternate method-Pedigree analysis (study	2
	_
more reactive ¹ / ₂ Mark	2
• Tissue culture ¹ / ₂ Mark	2
	Section B ysted Amoeba divides by multiple fission / produces amoeba or pseudopodiospores /cyst wall ts out/spores are liberated to grow as amoebae(sporulation) ($\frac{1}{2}$ X4=2 Marks) OR mule-asexual reproductive structure in sponges ($\frac{1}{2}$ + $\frac{1}{2}$ =1Mark) idia-asexual reproductive structure in <i>Penicillium</i> .(or any other correct example) ($\frac{1}{2}$ + $\frac{1}{2}$ = 1Mark) group reserves the fertilizing capacity of sperms. ($\frac{1}{2}$ + $\frac{1}{2}$ = 1 Mark) ons released suppresses sperm motility and the fertilizing capacity of sperms. ($\frac{1}{2}$ + $\frac{1}{2}$ = 1 Mark) trol crosses cannot be performed in human beings, Alternate method-Pedigree analysis (study the traits in several generations of a family). (1 + 1 = 2 Marks) more reactive $\frac{1}{2}$ Mark H group present in the pentose sugar $\frac{1}{2}$ Mark Mark Mark Mark Mark $\frac{1}{2}$ Mark Mark Mark

	Such an individual has overall masculine development	
	 has overall masculine development 	
	 feminine development is also expressed by the development of breast/ Gynaecomastia). Such individuals are sterile. 	
	(Any one symptom $\frac{1}{2}$ Mark)	
	If students give the example of Turner's Syndrome, it should be considered and marks given.	
	OR	
	a) i. point mutation/ single base substitution ¹ / ₂ Mark	
	ii. point mutation/ single base deletion ¹ / ₂ Mark	
	b) i 4 aminoacids 1 Mark	
	ii 4 aminoacids 1 Mark	
15.	In some species, the diploid egg cell is formed without reduction division and develops into the embryo without fertilization. 1 Mark In many <i>Citrus</i> and <i>Mango</i> varieties some of the nucellar cells surrounding the embryo sac start dividing, protrudes into the embryo sac and develops into the embryos. In such species each ovule contains many embryos. 2 Mark	3
16.	a.) Chemical evolution - First form of life originated from pre-existing non-living organic	3
	molecules.	
	b.) Amino acids	
	c.) H_2 1x3 =3 Mark	
17.	a.)	3
	Amino acidPheVal	
	DNA Code in GeneAAACACCodon in mRNAi)UUUii)GUG	
	Codon in mRNAi)UUUii)GUGAnticodon in tRNAiii)AAAiv)CAC	
	1Mark	
	b.)	
	i) A polypeptide containing 14 different amino acid = $14x3=42$ base pairs. 1Mark	
	ii) 14 different types of RNA are needed for the synthesis of polypeptide. 1Mark	
18.	Advantages:-Inbreeding is necessary if we want to evolve a pure line in any animal.	3
	• It helps in accumulation of superior genes and elimination of less desirable genes	
	• Inbreeding exposes harmful recessive genes that are to be eliminated by selection.	
	• Where there is selection at each step, it increases the productivity of inbred population.	
	(Any two 1 Mark each)	
	Disadvantages:-	
	reduces fertility	
	• decreases productivity.	
	(Any two $\frac{1}{2}$ x2=1 Mark)	
19.	Specific Bt toxin genes isolated from <i>Bacillus thuringiensis</i> is incorporated into cotton is coded	3
	by the genes <i>cryIAc</i> and <i>cryIIAb</i> that control the cotton bollworms $(\frac{1}{2} + \frac{1}{2} = 1 \text{ Mark})$	
	• <i>Bacillus</i> forms protein crystals that contain a toxic insecticidal protein .	
	 once an insect ingest the inactive toxin, it is converted into an active form 	
	 The toxin in the form of crystals gets solubilised due to alkaline pH in the gut 	
	 The toxin in the form of crystals gets solubilised due to arkanic pri in the gut The activated toxin binds to the surface of gut epithelial cells and perforate the walls 	
	causing the death of insect larva $(\frac{1}{2} \text{ x2=2 Marks})$	
	(/2 X2-2 IVIdIKS)	

20.	criteria for determining biodiversity hot spots are: –	3
20.	high levels of species richness (1 Mark)	5
	 High degree of endemism. (1 Mark) 	
	hotspots In India - Western Ghats, Himalaya (Indo-Burma/Sunderland to be accepted)	
	(Any 2) $(\frac{1}{2}+\frac{1}{2}) = 1$ Mark)	
	OR	
	<i>In-situ</i> Conservation– Threatened /endangered plants and animals are provided with urgent measures to save from extinction within their natural habitat and they are protected and allowed to grow naturally.	
	Example- wildlife sanctuaries/ national parks /biosphere reserves/ sacred groves	
	(Any one example) ($\frac{1}{2}$ Mark, 1 Mark for difference)	
	<i>Ex-situ</i> Conservation – Threatened animals and plants are taken out from their natural	
	habitat and placed in a setting where they can be protected and given care	
	Example- in botanical gardens/ zoological gardens/ seed/pollen/gene banks	
	(Any one example) (½ Mark, 1 Mark for difference)	
21.	(a) To maintain the cells in their physiologically most active log/exponential phase. 1 Mark	3
	(b) Temperature, pH, substrate, salts, vitamins, oxygen (Any 4) $(\frac{1}{2} x4 = 2 Mark)$	
	Section D	
22.	a.) Each primary spermatocyte will undergo meiosis-I and meiosis-2 which will result in 4	3
	spermatozoa	
	300 million/4=75 million 1 Mark	
	b) Since replication has occurred by this stage	
	46x2 = 92 chromatids 1 Mark	
	Meiosis –I is completed by this time $92/2 = 46$ chromatids - 1 Mark	
23.	a) Vigorous growth of useful aerobic microbes into flocs. 1 Mark	3
	b) Activated sludge – some of it is pumped back into the aeration tank to serve as the inoculum $\frac{1}{2} + \frac{1}{2}$ Mark	C
	c) During this digestion, a mixture of gases such as methane, hyrogensulphide is made and carbon	
	dioxide. These gases form biogas. 1 Mark	
24.	Platinum-pallidium Rhodium (Any two $\frac{1}{2} + \frac{1}{2} = 1$ Mark)	3
	CO_2, H_20 and CO [any 2] $\frac{1}{2} + \frac{1}{2} = 1$ Mark	
	Nitric oxide 1 Mark	
	Section E	
25.	Polygenic inheritance 1 Mark	5
	• If we assume <u>skin colour</u> is controlled by three genes A, B, C	
	• Dominant forms (A,B,C) are responsible for dark skin colour and recessive form (a, b, c) for light skin colour 1 Mark	
	• The genotype with all dominant alleles (AABBCC) will be darkest skin colour and with	
	I THE VEHICIVE WITH AT TOTATION ADDRESS FAADOLE I WITH DE HALKEST SKUTTUURD ADD. WITH	

	1 Mark	• The genotypes (AaBbCc) will be of interme and three recessive alleles
	1Markwas developed.1Mark	 The sequences were arranged based on some of these sequences was not humanly possible) Therefore, specialized computer based progration. These sequences were subsequently annotated. Chromosome 1 <i>Caenorhabditis elegans</i>
5	Is /radiations /and selecting plants with ¹ / ₂ x 2 = 1Mark 1Mark 1Mark PISCICULTURE duction and culturing of fishes is called	 a) Inducing mutation artificially using cher desirable characters Mung Bean Yellow mosaic virus b) AQUACULTURE It involves production and culturing of all
	ciculture. $1x2=2$ Mark	types of aquatic organisms in water bodies.
		0
	/irus $(\frac{1}{2}+\frac{1}{2}=1 \text{ Mark})$	a) AIDS caused by the Human Immuno deficien
		b) Vaccines prevent microbial infections by antigens to neutralise the pathogenic agents d
	cells that recognize the pathogen quickly on 1 Mark	The vaccines also generate memory – B an subsequent exposure. (1/2)
	Ils appear to have lost this property.(1) I damaging the surrounding normal tissues. It sites through blood, and wherever they get	
	2 Marks	
		d) Physiological barriers : Acid in the stomach
5		d) Physiological barriers : Acid in the stomach

Pie chart - $\frac{1}{2}$ Marks to be detected if not given in form of pie chart

Clouds and gases reflect one-fourth of incoming solar radiation/absorb some of it/but almost half of incoming solar radiation falls on Earth's surface heating it/while a small is reflected backs/Earth's surface re-emits heat in the form of infra red radiation/but part of this does not escape into space as atmospheric gases absorb a major fraction of it.

 $(\frac{1}{2} \times 6 \text{ points} = 3 \text{ Marks})$

OR

(a) – Amensalism

(1 Mark) (1 Mark)

- (b) Predation Justifications-
- Nature's way of transferring energy fixed by plants to higher trophic levels/conduits for energy transfer.
- Keep prey population under control
- Predators help in maintaining species diversity in a community, by reducing the intensity of competition among competing prey species.

(1x3 Points = 3 Marks)