+2 Haff yearly exam 2017-2018 Physics answer Key B, D point chargest & electric field = E-E = 0 1. (a) $C^2 N^{-1} m^{-2}$ 4. 5 (C) <u>Bolution</u>: $\phi = \frac{V}{\varepsilon_0} (os) \varepsilon_0 = \frac{9}{\phi}$ 5. (c) D2:1 Solution: Rs= nR $\mathcal{E}_0 = \frac{C}{N C N^2} \Rightarrow C N^2 m^2$ Rp= Pn 2. (c) 4m $\frac{R_s}{R_p} = \frac{nR}{R} = \frac{n^2}{1}$ Solution: $E_1 = \frac{1}{y_1^2}$ $E_2 = \frac{1}{y_2^2}$ $R_s:R_p = n^2:1$ $\frac{E_1}{E_1} = \frac{1}{r^2} \times \frac{r_2}{r} = \frac{1}{100} = \frac{r_2}{H}$ 6. (d) 0° 7. (a) 1:2 (a) $v_2 = 16$ $v_2 = 4m$ <u>Solution</u>: T = <u>271 m</u> BQ 3. (a) Leso Volt and Zero V/m Solution: -20 Solution: -20 SE +2 $T_1 = \frac{m_1}{q_1} \quad T_2 = \frac{m_2}{q_2}$ $T_1 = \frac{3.34 \times 10^{27}}{1.6 \times 10^{19}} (100)$ +9A T2 = 6.64 × 10²⁷ (2Het) 2×1.6×10¹⁹ (2Het) Voltage in 0. $V = \frac{1}{4\pi5} (+9 - 9 + 9 - 9)$ $\frac{T_1}{T_2} = \frac{3.34 \times 10^{-27} 2 \times 1.6 \times 10^{17}}{1.6 \times 10^{19} 6.64 \times 10^{27}}$ V=O electric field in O $\frac{T_1}{T_2} = \frac{6.68}{6.64} = \frac{1}{1}$ A,C Point charges of (+9) electric field => E-E=0 T1: T2 = 1:1

8. Capacitor (b)
9. (b)
$$T_3$$

Bothition:
 $Cos \phi = \frac{Pav}{apparent power}$
 $Cos \phi = \frac{100}{200} = \frac{1}{2}$
 $\phi = \cos^2(\frac{1}{2}) \Rightarrow \phi = 60^{\circ}$
 $\overline{(\phi = T_3)}$
10. $Zero(\phi)$
11. (d) brushes
12. (c) diffraction pattern
becomes narrower and
Croweded to getter
13. (c) partially polarised
14. (b) an odd multiple of The
Sotution:
 $\lambda = 5000 A^{\circ}$
distance = 6. 25 x10⁶ m
length = 6,2500 A^{\circ}
Count of $f = \frac{6}{5000} A^{\circ}$
 $= 12.5$

Wave length is
Original (or whole
member (Hoto train) busile)
O° (or 211 phase
but
Wowe length is
partial (or half
number (Institution)
TO 6000 Å 2 5980 Å
Solution:
Raman Shift 5990 +10
= 6000 Å
Roman Shift 5990 +10
= 5980 Å
Roman Shift 5990 +10
= 5980 Å
Roman Shift 5990 +10
Antistokes line = 5990 +10
= 5980 Å
Sommerfeld (CO
7. (a) b × 10¹⁸ HZ
Solution:

$$\lambda_{min} = \frac{12400}{V} Å^{\circ}$$

 $C_{\pm} = \frac{12400}{V} Å^{\circ}$
 $C_{\pm} = \frac{12400}{V} Å^{\circ}$
 $C_{\pm} = \frac{12400}{V} Å^{\circ}$

18. Continuous Spectrum
19. (a) 1: 25
Solution
Approxo:
$$\overline{u}_{er}R\left(\frac{1}{1}-\frac{1}{n_{1}^{2}}\right)$$

 $Ptimd: \overline{u}_{er}R\left(\frac{1}{n_{2}}-\frac{1}{n_{1}^{2}}\right)$
 $Ptimd: \overline{u}_{er}R\left(\frac{1}{n_{2}}-\frac{1}{n_{1}^{2}}\right)$
 $Ans: 1: 25$
 $do: (d) charge
Solution: $\lambda = \frac{k}{m_{V}} + \frac{k}{p}$
 $different elements$
 $some neutrons$
 $23. (d) neutron number docreases
 dd_{er}
 $db = \frac{4}{2}$
 dd_{er}
 $df = \frac{4}{2}$
 $df = \frac{4}{$$$

29. (a) The amplitude of the Carrier wave Varies in accordance with the amplitude of the modulating Signal. 30. (a) To avoid flicker in the picture prepared by 4 100064 P. KATHIRAVAN Msc., BEd, (Physics) & (chemistry) p.G. Asist in physics Milton Matric Higher Secondary School Mehur - 625106 Madurai (D.t) Cell: 7639371604, 9965484608