SH	SHANMUGAM S COMMON HALF YEARLY EXAMINATION -2019		
XI -	STD Chemistry answer key St.John's M.H.S.S porur Chennai -116 PART - I		
l.	Choose the best answer		
1.	a) CH ₂ O		
2.	a) azimuthal quantum number.		
3.	b) Unununium		
4.	c) CO + H ₂		
5.	a) (p) - (2) (q)- (3) (r)-(4) (s)- (1)		
6.	(d) both assertion and reasons are false		
7.	d) Isobaric process		
8.	b) 5		
9.	d) $\Delta G_{mix} = 0$		
10.	c) T- shape (slightly bent-T)		
11.	b) CH ₃ - CO- CH ₃		
12.	c) $-C(CH_3)_3 > -CH(CH_3)_2 > -CH_2CH_3 > -CH_3$		
13.	c) 2-methyl propane		
14.	b) Freon - 113		
15.	c) trickling filters		
	PART - II		
П.	Answer any 6 questions(Question no.24 is compulsory)		
16.	Aufbau principle ('building up')		
	In the ground state of the atoms, the orbitals are filled in the order of their increasing energies.		
17.	Two properties are important in determining ionization energies:		
	(i) nuclear charge; (ii) shielding by other electrons.		
	iil) In partially filled shells, electrons shield each other very imperfectly, so across the Period (from left to right) as the nuclear charge increases, ionization energies markedly increase.		
	iv) On the other hand, down a Group, the increased nuclear charge is effectively shielded by the filled electronic shells. Nucleus/valence electron attraction becomes attenuated, and ionization energies decrease.		
18.	Uses of Plaster of Paris		
	I) The Plaster of paris is in the building industry as well as plasters.		
	It is used for immobilising the affected part of organ where there is a bone fracture or sprain.		
	It is also employed in dentistry, in ornamental work and for making casts of statues and busts		
19.	First law of thermodynamics : ∆U = q + w		
	"Energy can neither be created nor destroyed, but may be converted from one form to another".		
	(or) Other statements of first law of thermodynamics		
20.	Dissociation of PCI₅ for K_c value $Kc = \frac{[PCI_3][CI_2]}{[PCI_5]}$		

-··	Homologous series:				
		a characteric functional group and the successiver mula by a CH ₂ group is called homologous serie			
22.	Friedel Craft's Alkylation: (Methylation)				
	Anhydrous A + CH ₃ Cl	AlCl 3 + HCl			
23.	Protective umbrella	toluene			
	At high altitudes to the atmosphere consists of a shield for harmful UV radiations.	a layer of ozone (O_3) which acts as an umbrella c	or		
	It protects us from harmful effect such as skin c	ancer			
24.	The Lewis structure of nitric acid is given as	H-Ö-N=Ö iö:			
	PAF	RT - III			
III.	Answer any 6 questions(Question no.33 is o	compulsory) 6 x 3 = 18			
25.	oxidation	reduction			
	 Addition of oxygen 	1. Removal of oxygen			
	2. Removal of hydrogen	2. Addition of hydrogen			
	 Addition of an electronegative element 	 Removal of an electronegative element 			
	4. Removal of an electropositive	4. Addition of an electropositive			
	element	element			
	5. Loss of electron	5. Gain of electron			
26.	Postulates of Bohr atom model				
	1. The energies of electrons are quantised				
	2. The electron is revolving around the nucleus in a certain fixed circular path called stationary orbit.				
	Z. The electron is revolving around the nucleus	in a certain fixed circular path called stationary or	rbit.		
	·	in a certain fixed circular path called stationary or nich the angular momentum (mvr) of the electron			
	3. Electron can revolve only in those orbits in wh	nich the angular momentum (mvr) of the electron			
27.	3. Electron can revolve only in those orbits in which be equal to an integral multiple of $h/2\pi$.	nich the angular momentum (mvr) of the electron			
27.	 3. Electron can revolve only in those orbits in who be equal to an integral multiple of h/2π. 4. As long as an electron revolves in the fixed statement of the fixed	nich the angular momentum (mvr) of the electron			
27.	 3. Electron can revolve only in those orbits in whether be equal to an integral multiple of h/2π. 4. As long as an electron revolves in the fixed state of the content of the fixed state. Characteristics of internal energy (U): 	nich the angular momentum (mvr) of the electron			
27.	 3. Electron can revolve only in those orbits in whether be equal to an integral multiple of h/2π. 4. As long as an electron revolves in the fixed state characteristics of internal energy (U): i) It is an extensive property and state function 	nich the angular momentum (mvr) of the electron			
27.	 3. Electron can revolve only in those orbits in whether be equal to an integral multiple of h/2π. 4. As long as an electron revolves in the fixed state characteristics of internal energy (U): i) It is an extensive property and state function ii) The change in internal energy of a system is 	hich the angular momentum (mvr) of the electron rationary orbit, it doesn ft lose its energy. expressed as $\Delta U = U_f - U_i$			
27.	3. Electron can revolve only in those orbits in while equal to an integral multiple of $h/2\pi$. 4. As long as an electron revolves in the fixed state Characteristics of internal energy (U): i) It is an extensive property and state function ii) The change in internal energy of a system is iii) In a cyclic process, $\Delta U= 0$	hich the angular momentum (mvr) of the electron rationary orbit, it doesn ft lose its energy. expressed as $\Delta U = U_f - U_i$			
	3. Electron can revolve only in those orbits in while equal to an integral multiple of $h/2\pi$. 4. As long as an electron revolves in the fixed state Characteristics of internal energy (U): i) It is an extensive property and state function ii) The change in internal energy of a system is iii) In a cyclic process, $\Delta U = 0$ iv $\Delta U = U_f - U_i = -ve (U_f < U_i)$ and $\Delta U = U_f - U_f$ Henry's law	hich the angular momentum (mvr) of the electron rationary orbit, it doesn ft lose its energy. expressed as $\Delta U = U_f - U_i$ $i_i = + ve (U_f > U_i)$ (vapour pressure of the solute) is directly propor	must		
	3. Electron can revolve only in those orbits in while equal to an integral multiple of $h/2\pi$. 4. As long as an electron revolves in the fixed state Characteristics of internal energy (U): i) It is an extensive property and state function ii) The change in internal energy of a system is iii) In a cyclic process, $\Delta U = 0$ iv $\Delta U = U_f - U_i = -ve (U_f < U_i)$ and $\Delta U = U_f - U_i$ Henry's law "the partial pressure of the gas in vapour phase	hich the angular momentum (mvr) of the electron rationary orbit, it doesn ft lose its energy. expressed as $\Delta U = U_f - U_i$ $i_i = + ve (U_f > U_i)$ (vapour pressure of the solute) is directly propor	must		

30.	C ₂ H ₆ O has 2 isomers in total, they are ethanol and methoxymethane (functional isomer)
	(CH ₃ -CH ₂ OH and CH ₃ -OCH ₃)
31.	Electrophilic Substitution of Benzene
	$+ NO_2^+$ $+ H^+$
32.	Conversion of chloro benzene into phenol & aniline
	$C_6H_5CI + NaOH \xrightarrow{350^{\circ}C} C_6H_5OH + NaCI$
	$C_6H_5CI + 2NH_3 \xrightarrow{250^{\circ}C} C_6H_5NH_2 + NH_4CI$
33.	The electronic configuration of K atom is K ₁₉ = (1s ²) (2s ² 2p ⁶) (3s ² 3p ⁶) 4s ¹
	Effective nuclear charge $(Z^*) = Z - S$
	Z*= 19 – [0.85 × (8) + (1.00 × 10)] Z*= 2.20
	PART - IV
IV.	Answer all the questions
34.	a) i) Redox reactions in which two substances combine to form a single compound are called
	combination reaction. $C + O_2 \longrightarrow CO_2$
	ii) Modern Periodic Law
	"the physical and chemical properties of the elements are periodic functionsof their atomic numbers."
	(OR)
	b) i)Energy of an electron in hydrogen atom in ground state is -13.6 eV.
	$E_n = -13.6 \frac{Z^2}{n^2} \text{ ev} \qquad \qquad$
	$E_n = -13.6 \frac{(1)^2}{(3)^2}$ $E_n = -13.6 \frac{1}{9} = -1.5 ev$
	Energy of the electron in the second excited state in hydrogen atom is -1.5 electron volt .
	ii) Gibbs free energy is defined as below
	G = H - TS
	Gibbs free energy and the net work done by the system:
	$\Delta G = \Delta H - T \Delta S$
	We know that,
	$\Delta H = \Delta U + P \Delta V$
	$\Delta G = \Delta U + P \Delta V - T \Delta S$
	from first law of thermodynamics $\Delta U = q + w$
\langle	from second law of thermodynamics

\square			
,	$\Delta G = q + w + P \Delta V - T \Delta S \qquad \Delta S = \frac{q}{T}, \ T \Delta S = q$		
	$\Delta G = q + w + P\Delta V - q \qquad \Delta G = w + P\Delta V$		
	Net work of the system is $-\Delta G = -w - P\Delta V$		
	But - $P\Delta V$ represents the work done due to expansion against a constant external pressure		
35.	i) Hydrides		
	The dihydrogen combines with number of elements to form Hydrides		
	Ionic (Saline) hydrides		
	These are hydrides composed of an electropositive metal, generally, an alkali or alkaline-earth metal, except beryllium and magnesium,formed by transfer of electrons from metal to hydrogen atoms.		
	eg)LiH , CaH ₂		
	Covalent (Molecular) hydrides :		
	They are compounds in which hydrogen is attached to another element by sharing of electrons		
	eg) electronprecise (CH_4 , C_2H_6 , SiH_4 , GeH_4),		
	electrondeficient (B ₂ H ₆)		
	electron-rich hydrides(NH ₃ ,H ₂ O).		
	Metallic (Interstitial) hydrides		
	Metallic hydrides are usually obtained by hydrogenation of metals and alloys in which hydrogen occupies the interstitial sites(voids).		
non-stoichiometric with variable composition (TiH _{1.5-1.8} and PdH _{0.6-0.8})			
	(OR)		
	a) i) Solvay process		
	$2NH_3 + H_2O + CO_2 \longrightarrow (NH_4)_2CO_3 \qquad (NH_4)_2CO_3 + H_2O + CO_2 \longrightarrow 2NH_4HCO_3$		
	$2NH_4HCO_3 + NaCI \longrightarrow NH_4CI + NaHCO_3 $ $2NaHCO_3 \longrightarrow Na_2CO_3 + CO_2 + H_2O$		
	ii) Criteria for spontaneity of a process		
	a) If the enthalpy change of a process is negative, then the process is exothermic and may be spontaneous. (ΔH is negative).		
	b) If the entropy change of a process is positive, then the process may occur spontaneously.		
	(ΔS is positive).		
	c)The gibbs free energy which is the combination of the above two (Δ H -T Δ S) should be negative for a reaction to occur spontaneously, i.e. the necessary condition for a reaction to be spontaneous is Δ H-T Δ S < 0		
36.	a) i) Ideal gas equation		
	Boyle's law $V \alpha \frac{1}{P}$		
	Charles law $V \alpha T$ $V \alpha \frac{nT}{P}$ $V = \frac{nRT}{P}$		
	Avogadro's law V α n P P		
I			
	R is the proportionality constant called universal gas constant.		
	R is the proportionality constant called universal gas constant. PV = nRT		

ii)	Equilibrium in Chemical Pro equilibrium is said to be dyn	•			
	reactants react to give produ				
	original reactants			Treact to give back the	
	onginal reactants				
b)	i)	(OR)			
5)	i) $K_{c} = \frac{[HCI]^{4} [O_{2}]}{[H_{2}O]^{2}[CI_{2}]^{2}}$,	$K_{p} = \frac{P_{HCI}^{4} \times P_{O_{2}}}{P_{H_{2}O}^{2} \times P_{CI_{2}}^{2}}$			
	ii) Solubility				
	Solubility of a solute is the maximum amount of solute that can be dissolved in a specific amount of solvent at a specified temperature				
	Factors influencing the so	lubility			
	i) Nature of solute and solvent ii) Effect of temperature:				
	1. Solid solute in liqu	id solvent: 2.Gaseous	solute in liquid solver	ıt	
	iv) Effect of pressure:				
37.					
	1) soluble in organic solvent such as benzene, toluene, ether, chloroform				
	2) Many of the organic compounds are inflammable				
	3) Organic compounds are characterised by functional groups				
	4) They exhibit isomerism which is a unique phenomenon.				
	-	Molecular formula , OH CH	IUPAC Name Methanol	Structural formula CH ₃ OH	
	(1) Methyl alcohol(2) Ethyl alcohol	CH C₂H₅OH	Ethanol	CH ₃ CH ₂ OH	
	(3) Propyl alcohol	C ₃ H ₇ OH	Propanol	CH ₃ CH ₂ CH ₂ OH	
	(4) Butyl alcohol	°, C₄H₀OH	Butanol	CH ₃ CH ₂ CH ₂ CH ₂ OH	
		4 9 (OR)		5 2 2 2	
	b) i) 1) Benzenoid compounds or aromatic homocyclic				
		∕ ^{OH}			
	ĺ				
	Į	Phenol			
	2) Non-Benzenoid compounds also aromatic homocyclic				
		MA			
	azulen				
	azarchic				
	S.SHANMUGAM, St.Jol	hn's M.H.S.S porur Chenr	nai -116 Mob: 984194	45665	

II) Inductive effect

Their ability to release or withdraw the electron through sigma covalent bond is called +I effect and -I effect respectively.

1) Positive inductive effect (+ I)

Refers to electron releasing tendency of functional groups.

For example, alkyl, aryl, metals, etc.

2) Negative inductive effect (- I)

refers to electron accepting tendency of functional groups.

Example: -F, -CI, -COOH, -NO₂, NH₂

38. Molecular orbital diagram of nitrogen molecule (N₂)

Electronic configuration of N atom 1s² 2s² 2p³

Electronic configuration of $\rm N_2$ molecule

 $(\sigma_{1s})^2 (\sigma_{1s}^*)^2 (\sigma_{2s}^*)^2 (\sigma_{2s}^*)^2 (\pi_{2px}^2)^2 (\pi_{2py}^2)^2 (\sigma_{2pz}^2)^2$

Bond order =
$$\frac{N_b - N_a}{2} = \frac{10 - 4}{2} = 3$$

Molecule has no unpaired electrons hence it is diamagnetic.

S.SHANMUGAM, St.John's M.H.S.S porur Chennai -116 Mob: 9841945665

/			
ii)	Gammaxane Benzene $+3Cl_2$ Sun light (hv) Benzene $+3Cl_2$ Sun light (hv) Benzene hexachloride (BHC)		
	Benzene hexachloride (BHC), any of several stereoisomers of 1,2,3,4,5,6-hexachlorocyclohexane formed by the light-induced addition of chlorine to benzene. One of these isomers is an insectiside called lindane, or Gammexane.		
	Uses: has been used both as an agricultural insecticide and as a pharmaceutical treatment for lice and scabies		
	(OR)		
	 b) i) The carbylamine reaction, also known as Hoffman's isocyanide test is a chemical test for detection ofprimary amines 		
	iii) In this reaction, the analyte is heated with alcoholic potassium hydroxide and chloroform. If a primary $CH_3CH_2NH_2 + CHCI_3 + 3KOH \longrightarrow CH_3CH_2NC + 3KCI + 3H_2O$ oul smelling substances alcoholic Ethyl isocyanide		
	 ii) Harmful effects of acid rain (i) Acid rain affects plants and animal life in aquatic ecosystem. (ii) It is harmful for agriculture, trees and plants as it dissolves and removes the nutrients needed for their growth. (iii) It corrodes water pipes resulting in the leaching of heavy metals such as iron, lead and copper into the drinking water which have toxic effects. (iv) It causes respiratory ailment in humans and animals. 		
	SHANMUGAM S St.John's M.H.S.S porur Chennai -116 Mob: 9841945665		
	S.SHANMUGAM ,St.John's M.H.S.S porur Chennai -116 Mob: 9841945665		