No. of Printed Pages : 23

6673

பதிவு எண் Register Number

PART - III கணிதம் / MATHEMATICS

(தமிழ் மற்றும் ஆங்கில வழி / Tamil & English Versions)

நேரம் : 3 மணி] [மொத்த மதிப்பெண்கள் : 200 Time Allowed : 3 Hours] [Maximum Marks : 200

- **அறிவுரை : (**1) அனைத்து வினாக்களும் சரியாக பதிவாகி உள்ளதா என்பதனை சரிபார்த்துக் கொள்ளவும். அச்சுப்பதிவில் குறையிருப்பின் அறைக் கண்காணிப்பாளரிடம் உடனடியாகத் தெரிவிக்கவும்.
 - (2) நீலம் அல்லது கருப்பு மையினை மட்டுமே எழுதுவதற்கும் அடிக்கோடிடுவதற்கும் பயன்படுத்த வேண்டும். படங்கள் வரைவதற்கு பென்சில் பயன்படுத்தவும்.
- **Instructions :** (1) Check the question paper for fairness of printing. If there is any lack of fairness, inform the Hall Supervisor immediately.
 - (2) Use Blue or Black ink to write and underline and pencil to draw diagrams.

பகுதி – அ / PART - A

- குறிப்பு : (i) அனைத்து வினாக்களுக்கும் விடையளிக்கவும். 40
 - (ii) கொடுக்கப்பட்ட நான்கு விடைகளில் மிகவும் ஏற்புடைய விடையினை தேர்ந்தெடுத்து குறியீட்டுடன் விடையினையும் சேர்த்து எழுதுக.
- Note :
- (i) All questions are compulsory.
- (ii) Choose the most suitable answer from the given four alternatives and write the option code and the corresponding answer.

[திருப்புக / Turn over

40x1=40

(2)

1.
$$\left(\frac{dx}{dy}\right)^2 + 5y^{\frac{1}{3}} = x$$
 என்ற வகைக்கெழு சமன்பாட்டின் :
(1) வரிசை 2 மற்றும் படி 1 (2) வரிசை 1 மற்றும் படி 2
(3) வரிசை 1 மற்றும் படி 6 (4) வரிசை 1 மற்றும் படி 3
The differential equation $\left(\frac{dx}{dy}\right)^2 + 5y^{\frac{1}{3}} = x$ is :
(1) of order 2 and degree 1 (2) of order 1 and degree 2
(3) of order 1 and degree 6 (4) of order 1 and degree 3

 (2m+3)+i(3n-2) என்ற கலப்பெண்ணின் இணையெண் (m-5)+i(n+4) எனில் (n, m) என்பது :

(1) $\left(\frac{-1}{2}, -8\right)$ (2) $\left(\frac{-1}{2}, 8\right)$ (3) $\left(\frac{1}{2}, -8\right)$ (4) $\left(\frac{1}{2}, 8\right)$

If (m-5)+i(n+4) is the complex conjugate of (2m+3)+i(3n-2) then (n, m) are :

(1)
$$\left(\frac{-1}{2}, -8\right)$$
 (2) $\left(\frac{-1}{2}, 8\right)$ (3) $\left(\frac{1}{2}, -8\right)$ (4) $\left(\frac{1}{2}, 8\right)$

3. arg (z) -ன் முதன்மை மதிப்பு அமையும் இடைவெளி :

(1) $\left[0, \frac{\pi}{2}\right]$ (2) $(-\pi, \pi]$ (3) $[0, \pi]$ (4) $(-\pi, 0]$

The principal value of arg (z) lies in the interval :

(1)
$$\left[0,\frac{\pi}{2}\right]$$
 (2) $(-\pi,\pi]$ (3) $[0,\pi]$ (4) $(-\pi,0]$

6673

4. x²/a² + y²/b² = 1 என்ற நீள்வட்டத்தின் பரப்பை நெட்டச்சு, குற்றச்சு ஆகியவற்றைப் பொறுத்து சுழற்றப்படும் திடப்பொருளின் கன அளவுகளின் விகிதம் :

(1) $b^2: a^2$ (2) $a^2: b^2$ (3) a:b (4) b:a

Volume of the solid obtained by revolving the area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ about major and minor axes are in the ratio :

(1) $b^2: a^2$ (2) $a^2: b^2$ (3) a: b (4) b: a

y²(x-2) = x²(1+x) என்ற வளைவரைக்கு:

- (1) x -அச்சுக்கு இணையான ஒரு தொலைத் தொடுகோடு உண்டு
- (2) y -அச்சுக்கு இணையான ஒரு தொலைத் தொடுகோடு உண்டு
- (3) இரு அச்சுகளுக்கும் இணையான தொலைத் தொடுகோடுகள் உண்டு
- (4) தொலைத் தொடுகோடு இல்லை

The curve $y^2(x-2) = x^2(1+x)$ has :

- (1) an asymptote parallel to x-axis
- (2) an asymptote parallel to y-axis
- (3) asymptotes parallel to both axes
- (4) no asymptote

A

- பெருக்கலை பொறுத்து குலமாகிய ஒன்றின் n -ஆம் படி மூலங்களில் ω^k இன் எதிர்மறை (k < n) :
 - (1) $\omega^{\frac{1}{k}}$ (2) ω^{-1} (3) ω^{n-k} (4) $\omega^{\frac{n}{k}}$

In the multiplicative group of n^{th} roots of unity, the inverse of ω^k is (k < n):

(1) $\omega^{\frac{1}{k}}$ (2) ω^{-1} (3) ω^{n-k} (4) $\omega^{\frac{n}{k}}$

[திருப்புக / Turn over

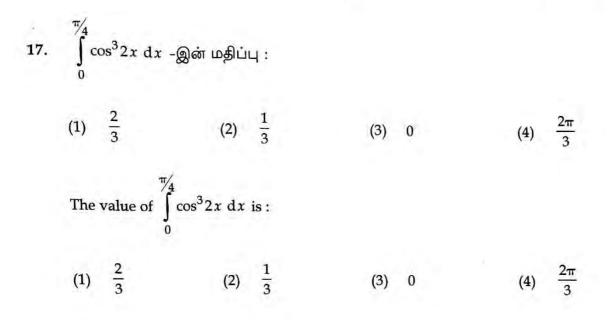
A

7. $\frac{x-3}{1} = \frac{y+3}{5} = \frac{2z-5}{3} - \dot{s} \oplus \text{ (moments and is } (1, 3, 5) \text{ upin for an angle in the series of the series$

The equation of the line parallel to $\frac{x-3}{1} = \frac{y+3}{5} = \frac{2z-5}{3}$ and passing through the point (1, 3, 5) in vector form, is :

- (1) $\vec{r} = (\vec{i} + 5\vec{j} + 3\vec{k}) + t(\vec{i} + 3\vec{j} + 5\vec{k})$
- (2) $\vec{r} = (\vec{i} + 3\vec{j} + 5\vec{k}) + t(\vec{i} + 5\vec{j} + 3\vec{k})$
- (3) $\overrightarrow{r} = \left(\overrightarrow{i} + 5\overrightarrow{j} + \frac{3}{2}\overrightarrow{k}\right) + t\left(\overrightarrow{i} + 3\overrightarrow{j} + 5\overrightarrow{k}\right)$
- (4) $\vec{r} = \left(\vec{i} + 3\vec{j} + 5\vec{k}\right) + t\left(\vec{i} + 5\vec{j} + \frac{3}{2}\vec{k}\right)$
- ஒரு நகரும் பொருளின் தூரம் மற்றும் நேரம் இவற்றிற்கு இடையேயுள்ள தொடர்பை
 y = F (t) குறிக்கின்றது எனில் அப்பொருளின் முடுக்கம் :
 - (1) திசை வேகத்தின் சாய்வு/நேரத்தின் வரைபடம்
 - (2) தூரத்தின் சாய்வு/நேரத்தின் வரைபடம்
 - (3) முடுக்கத்தின் சாய்வு/நேரத்தின் வரைபடம்
 - (4) திசை வேகத்தின் சாய்வு/தூரத்தின் வரைபடம்

The distance - time relationship of a moving body is given by y = F(t) then the acceleration of the body is the :


- (1) Gradient of the velocity/time graph
- (2) Gradient of the distance/time graph
- (3) Gradient of the acceleration/time graph
- (4) Gradient of the velocity/distance graph

MARCH 2017

	$f(x) = x^2 - 4x + 5$ என்ற சார்பு [0, 3] இல் கொண்டுள்ள மீப்பெரு பெரும மதிப்பு :													
		2	(2)		(3)		(4)	5						
	If $f(x) = x^2 - 4x + 5$ on [0, 3] then the absolute maximum value is :													
	(1)	2	(2)	3	(3)	4	(4)	5						
10.	p -யின் மெய்மதிப்பு T மற்றும் q இன் மெய்மதிப்பு F எனில் பின்வருவனவற்றில் எவை மெய்மதிப்பு T என இருக்கும் ?													
	(i)	pvq	(ii)	~ P \ q	(iii)	p ∨ (~q)	(iv)	p ∧ (~q)						
	(1)	(i), (ii), (iii)	(2)	(i), (ii), (iv)	(3)	(i), (iii), (iv)	(4)	(ii), (iii), (iv)						
	If p's truth value is T and q's truth value is F, then which of the following have the truth value T ?													
	(i)	p∨q	(ii)	$\sim p \lor q$	(iii)	p ∨ (~q)	(iv)	p ∧ (~q)						
	(1)	(i), (ii), (iii)	(2)	(i), (ii), (iv)	(3)	(i), (iii), (iv)	(4)	(ii), (iii), (iv)						
1.	xy = 18 என்ற செவ்வக அதிபரவளையத்தின் ஒரு குவியம் :													
	(1)	(6, 6)		(3, 3)		(4, 4)	(4)	(5, 5)						
	One of the foci of the rectangular hyperbola $xy = 18$ is :													
	(1)	(6, 6)	(2)	 Second and the second se		(4, 4)	(4)	(5, 5)						
12.	பின்வருவனவற்றுள் எது ஏறுபடி வடிவத்தில் சரியல்ல ?													
	(1)	1) எல்லாமே பூச்சிய உறுப்புகளாய்க் கொண்ட ஒவ்வொரு நிரையும் பூச்சியமற்ற உறுப்புகளை உடைய நிரைக்கு கீழே அமைதல் வேண்டும்.												
	(2)	2) ஒவ்வொரு பூச்சியமற்ற நிரையின் முதல் உறுப்பு 1 ஆக இருத்தல் வேண்டும்.												
	(3)	(3) பூச்சியமற்ற நிரையில் வரும் முதல் பூச்சியமற்ற உறுப்பிற்கு முன்பாக இடம் பெறும் பூச்சியங்களின் எண்ணிக்கை, அதற்கு அடுத்து வரும் நிரையில் உள்ள பூச்சியங்களின் எண்ணிக்கையை விடக் குறைவாக இருத்தல் வேண்டும்.												
	(4) இரு நிரைகள் ஒரே எண்ணிக்கை உடைய பூச்சியங்களை, பூச்சியமற்ற உறுப்பிற்கு முன்னதாக பெற்றிருக்கலாம்.													
	In echelon form, which of the following is incorrect ?													
	In ea	 Every row of A which has all its entries 0 occurs below every row which has a non-zero entry. 												
	In eo (1)		у.											
		non-zero entr The first non-	zero en	try in each non	-zero ro	w is 1.								
	(1)	non-zero entr The first non- The number o	zero en of zeros	try in each non before the firs in the next ro	t non-ze	w is 1. ero element in a	a row is	less than the						
	(1) (2)	non-zero entr The first non- The number of number of suc	zero en of zeros ch zeros	before the firs	t non-ze w.	ow is 1. Pro element in a Defore the first :		4						

13.
$$m < 0$$
 ages Digitalisi, $\frac{dx}{dy} + mx = 0$ Distribution is final:
(1) $x = ce^{my}$ (2) $x = ce^{-my}$ (3) $x = my + c$ (4) $x = c$
Solution of $\frac{dx}{dy} + mx = 0$, where $m < 0$ is:
(1) $x = ce^{my}$ (2) $x = ce^{-my}$ (3) $x = my + c$ (4) $x = c$
14. Given submittivity to mfl X - or Diventify the substitution $f(x) = ce^{-\frac{1}{2}(x-100)^2} \frac{1}{25}}$ show the constraint of the substitution $f(x) = ce^{-\frac{1}{2}(x-100)^2} \frac{1}{25}}$ show the constraint of the substitution $f(x) = ce^{-\frac{1}{2}(x-100)^2} \frac{1}{25}}$. Then the value of c is:
(1) $\sqrt{2\pi}$ (2) $\frac{1}{\sqrt{2\pi}}$ (3) $5\sqrt{2\pi}$ (4) $\frac{1}{5\sqrt{2\pi}}$
15. Given by the substitution $f(x) = ce^{-\frac{1}{2}(x-100)^2} \frac{1}{25}}$. Then the value of c is:
(1) $\sqrt{2\pi}$ (2) $\frac{1}{\sqrt{2\pi}}$ (3) $5\sqrt{2\pi}$ (4) $\frac{1}{5\sqrt{2\pi}}$
15. Given by x uppyide y agasation and the substitution for the substitution for the substitue for the substitue

6673

7

18. X என்ற சமவாய்ப்பு மாறியின் நிகழ்தகவுப் பரவல் பின்வருமாறு :

x	0	1	2	3	4	5
P(X=x)	$\frac{1}{4}$	2a	3a	4a	5a	$\frac{1}{4}$

P(1 ≤ X ≤ 4) இன் மதிப்பு :

(1)
$$\frac{10}{21}$$
 (2) $\frac{2}{7}$ (3) $\frac{1}{14}$ (4) $\frac{1}{2}$

A random variable X has the following probability distribution :

x	0	1	2	3	4	5
P(X=x)	$\frac{1}{4}$	2a	3a	4a	5a	$\frac{1}{4}$

Then $P(1 \le X \le 4)$ is :

(1)
$$\frac{10}{21}$$
 (2) $\frac{2}{7}$ (3) $\frac{1}{14}$ (4) $\frac{1}{2}$

[திருப்புக / Turn over

19. ஒரு ஈருறுப்புப் பரவலின் சராசரி 5 மேலும் திட்டவிலக்கம் 2 எனில் n மற்றும் p -இன் மதிப்புகள்:

8

(1) $\left(\frac{4}{5}, 25\right)$ (2) $\left(25, \frac{4}{5}\right)$ (3) $\left(\frac{1}{5}, 25\right)$ (4) $\left(25, \frac{1}{5}\right)$

The mean of a binomial distribution is 5 and its standard deviation is 2. Then the values of n and p are :

(1)
$$\left(\frac{4}{5}, 25\right)$$
 (2) $\left(25, \frac{4}{5}\right)$ (3) $\left(\frac{1}{5}, 25\right)$ (4) $\left(25, \frac{1}{5}\right)$

20. y=f(x) என்ற வளைவரையின் வளைவு மாற்றுப்புள்ளியின் x மதிப்பு x₀ எனில் (இரண்டாம் வகைக்கெழு கிடைக்கும் எனக் கொள்க).

(1)
$$f(x_0) = 0$$
 (2) $f'(x_0) = 0$ (3) $f''(x_0) = 0$ (4) $f''(x_0) \neq 0$

If x_0 is the x-coordinate of the point of inflection of a curve y=f(x) then (assume second derivative exists) :

- (1) $f(x_0) = 0$ (2) $f'(x_0) = 0$ (3) $f''(x_0) = 0$ (4) $f''(x_0) \neq 0$
- f(x) = cos x/2 என்ற சார்பிற்கு [π, 3π] இல் ரோல் தேற்றத்தின்படி அமைந்த 'c'
 இன் மதிப்பு :
 - (1) 0 (2) 2π (3) $\frac{\pi}{2}$ (4) $\frac{3\pi}{2}$

The value of 'c ' in Rolle's Theorem for the function $f(x) = \cos \frac{x}{2}$ on $[\pi, 3\pi]$ is :

(1) 0 (2) 2π (3) $\frac{\pi}{2}$ (4) $\frac{3\pi}{2}$

MARCH 2017

6673

22. y² = 4ax என்ற பரவளையத்திற்கு 't₁' -இல் வரையப்படும் செங்கோடு பரவளையத்தை மீண்டும் 't₂' -இல் சந்திக்கும் எனில் (t₁ + ²/_{t₁}) என்பது :

(1)
$$-t_2$$
 (2) t_2 (3) t_1+t_2 (4) $\frac{1}{t_2}$

The normal at 't₁' on the parabola $y^2 = 4ax$ meets the parabola at 't₂' then $\left(t_1 + \frac{2}{t_1}\right)$ is :

(1)
$$-t_2$$
 (2) t_2 (3) t_1+t_2 (4) $\frac{1}{t_2}$

23. ω என்பது 1 இன் முப்படி மூலம் எனில் (1 – ω) (1 – $ω^2$) (1 – $ω^4$) (1 – $ω^8$) இன் மதிப்பு :

(1) 9 (2) -9 (3) 16 (4) 32 If ω is the cube root of unity then the value of $(1-\omega)(1-\omega^2)(1-\omega^4)(1-\omega^8)$ is : (1) 9 (2) -9 (3) 16 (4) 32

24. $\vec{PR} = 2\vec{i} + \vec{j} + \vec{k}, \vec{QS} = -\vec{i} + 3\vec{j} + 2\vec{k}$ எனில், நாற்கரம் PQRS இன் பரப்பு:

(1) $5\sqrt{3}$ (2) $10\sqrt{3}$ (3) $\frac{5\sqrt{3}}{2}$ (4) $\frac{3}{2}$

If $\overrightarrow{PR} = 2\vec{i} + \vec{j} + \vec{k}$, $\overrightarrow{QS} = -\vec{i} + 3\vec{j} + 2\vec{k}$ then the area of the quadrilateral PQRS is :

(1) $5\sqrt{3}$ (2) $10\sqrt{3}$ (3) $\frac{5\sqrt{3}}{2}$ (4) $\frac{3}{2}$

A

[திருப்புக / Turn over

MARCH 2017

25. 9x²+5y²-54x-40y+116=0 என்ற கூம்பு வளைவின் மையத் தொலைத்தகவின் மதிப்பு :

(1) $\frac{1}{3}$ (2) $\frac{2}{3}$ (3) $\frac{4}{9}$ (4) $\frac{2}{\sqrt{5}}$

The eccentricity of the conic $9x^2 + 5y^2 - 54x - 40y + 116 = 0$ is :

- (1) $\frac{1}{3}$ (2) $\frac{2}{3}$ (3) $\frac{4}{9}$ (4) $\frac{2}{\sqrt{5}}$
- 26. (Z₉, +₉) இல் [7] இன் வரிசை :

(1)	9	(2) 6	(3) 3	(4) 1
The	order of [7] in (Z	29, + ₉) is :		
(1)	9	(2) 6	(3) 3	(4) 1

27. P -ஆனது கலப்பு எண் மாறி z -ஐ குறிக்கின்றது மற்றும் |2z - 1| = 2|z| எனில் P -இன் நியமப் பாதை :

- (1) $x = \frac{1}{4}$ என்ற நேர்க்கோடு (2) $y = \frac{1}{4}$ என்ற நேர்க்கோடு
- (3) $z = \frac{1}{2}$ என்ற நேர்க்கோடு (4) $x^2 + y^2 4x 1 = 0$ என்ற வட்டம்

If P represents the variable complex number z and if |2z-1|=2 |z| then the locus of P is :

(1) the straight line $x = \frac{1}{4}$ (2) the straight line $y = \frac{1}{4}$

(3) the straight line $z = \frac{1}{2}$ (4) the circle $x^2 + y^2 - 4x - 1 = 0$

A

28. ஒரு தொடர் சமவாய்ப்பு மாறி X இன் நிகழ்தகவு அடர்த்திச் சார்பு ƒ (x) எனில் :

- (1) $0 \le f(x) \le 1$ (2) $f(x) \ge 0$ (3) $f(x) \le 1$ (4) $0 \le f(x) \le 1$ A continuous random variable X has p.d.f. f(x), then :
- (1) $0 \le f(x) \le 1$ (2) $f(x) \ge 0$ (3) $f(x) \le 1$ (4) $0 \le f(x) \le 1$

29. 36y² – 25x² + 900 = 0 என்ற அதிபரவளையத்தின் தொலைத் தொடுகோடுகள் :

(1) $y = \pm \frac{6}{5}x$ (2) $y = \pm \frac{5}{6}x$ (3) $y = \pm \frac{36}{25}x$ (4) $y = \pm \frac{25}{36}x$

The asymptotes of the hyperbola $36y^2 - 25x^2 + 900 = 0$, are :

(1) $y = \pm \frac{6}{5}x$ (2) $y = \pm \frac{5}{6}x$ (3) $y = \pm \frac{36}{25}x$ (4) $y = \pm \frac{25}{36}x$

30.
$$I_n = \int \cos^n x \, dx$$
 எனில் $I_n =$

A

- (1) $\frac{-1}{n}\cos^{n-1}x\sin x + \left(\frac{n-1}{n}\right)I_{n-2}$ (2) $\cos^{n-1}x\sin x + \left(\frac{n-1}{n}\right)I_{n-2}$
- (3) $\frac{1}{n}\cos^{n-1}x\sin x \left(\frac{n-1}{n}\right)I_{n-2}$ (4) $\frac{1}{n}\cos^{n-1}x\sin x + \left(\frac{n-1}{n}\right)I_{n-2}$

If
$$I_n = \int \cos^n x \, dx$$
 then $I_n =$
(1) $\frac{-1}{n} \cos^{n-1} x \sin x + \left(\frac{n-1}{n}\right) I_{n-2}$ (2) $\cos^{n-1} x \sin x + \left(\frac{n-1}{n}\right) I_{n-2}$

(3)
$$\frac{1}{n}\cos^{n-1}x\sin x - \left(\frac{n-1}{n}\right)I_{n-2}$$
 (4) $\frac{1}{n}\cos^{n-1}x\sin x + \left(\frac{n-1}{n}\right)I_{n-2}$

[திருப்புக / Turn over

31.
$$\int_{0}^{\frac{\pi}{2}} \frac{\sin x - \cos x}{1 + \sin x \cos x} dx - \text{(Bind in Addition in Constraints)} dx = 0$$

$$(1) \quad \frac{\pi}{2} \qquad (2) \quad 0 \qquad (3) \quad \frac{\pi}{4} \qquad (4) \quad \pi$$
The value of
$$\int_{0}^{\frac{\pi}{2}} \frac{\sin x - \cos x}{1 + \sin x \cos x} dx \text{ is :}$$

$$(1) \quad \frac{\pi}{2} \qquad (2) \quad 0 \qquad (3) \quad \frac{\pi}{4} \qquad (4) \quad \pi$$

32. y = ke^{λx} எனில் அதன் வகைக்கெழுச் சமன்பாடு (இங்கு k என்பது மாறத்தக்க மாறிலி) :

(1)
$$\frac{dy}{dx} = \lambda y$$
 (2) $\frac{dy}{dx} = k y$ (3) $\frac{dy}{dx} + k y = 0$ (4) $\frac{dy}{dx} = e^{\lambda x}$
If $y = ke^{\lambda x}$ then its differential equation is (where k is arbitrary constant):

(1) $\frac{dy}{dx} = \lambda y$ (2) $\frac{dy}{dx} = ky$ (3) $\frac{dy}{dx} + ky = 0$ (4) $\frac{dy}{dx} = e^{\lambda x}$

33. u = f(x, y) என்பது x மற்றும் y ஆகியவற்றால் ஆன வகையிடத்தக்க சார்பு. மேலும் x மற்றும் y என்பவை 't '-ஆல் ஆன வகையிடத்தக்க சார்புகள் எனில் :

(1) $\frac{du}{dt} = \frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial t} + \frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial t}$ (2) $\frac{du}{dt} = \frac{\partial f}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial t}$ (3) $\frac{du}{dt} = \frac{\partial f}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial f}{\partial y} \cdot \frac{dy}{dt}$ (4) $\frac{\partial u}{\partial t} = \frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial t} + \frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial t}$

If u = f(x, y) is a differentiable function of x and y; where x and y are differentiable functions of 't' then :

(1)
$$\frac{du}{dt} = \frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial t} + \frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial t}$$
 (2) $\frac{du}{dt} = \frac{\partial f}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial t}$
(3) $\frac{du}{dt} = \frac{\partial f}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial f}{\partial y} \cdot \frac{dy}{dt}$ (4) $\frac{\partial u}{\partial t} = \frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial t} + \frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial t}$

6673

34.
$$A = \begin{bmatrix} 0 & 0 \\ 0 & 5 \end{bmatrix}$$
 crossility, A^{12} crossility:

 (1) $\begin{bmatrix} 0 & 0 \\ 0 & 60 \end{bmatrix}$
 (2) $\begin{bmatrix} 0 & 0 \\ 0 & 5^{12} \end{bmatrix}$
 (3) $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$
 (4) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

 If $A = \begin{bmatrix} 0 & 0 \\ 0 & 5 \end{bmatrix}$, then A^{12} is:

 (1) $\begin{bmatrix} 0 & 0 \\ 0 & 60 \end{bmatrix}$
 (2) $\begin{bmatrix} 0 & 0 \\ 0 & 5^{12} \end{bmatrix}$
 (3) $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$
 (4) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

35. a ஐ நிலை வெக்டாராக கொண்ட புள்ளி வழியாகவும் u மற்றும் v -க்கு இணையாகவும் அமைந்த தளத்தின் துணை அலகு அல்லாத வெக்டர் சமன்பாடு:

- (1) $\begin{bmatrix} \overrightarrow{r}, \overrightarrow{u}, \overrightarrow{v} \end{bmatrix} = 0$ (2) $\begin{bmatrix} \overrightarrow{r}, \overrightarrow{u}, \overrightarrow{v} \end{bmatrix} = 0$
- (3) $\begin{bmatrix} \overrightarrow{r}, \overrightarrow{a}, \overrightarrow{u} \times \overrightarrow{v} \end{bmatrix} = 0$ (4) $\begin{bmatrix} \overrightarrow{r}, \overrightarrow{a}, \overrightarrow{u}, \overrightarrow{v} \end{bmatrix} = 0$

The non-parametric vector equation of a plane passing through a point whose position vector is \vec{a} and parallel to \vec{u} and \vec{v} , is :

- (1) $\begin{bmatrix} \overrightarrow{r}, \overrightarrow{u}, \overrightarrow{v} \end{bmatrix} = 0$ (2) $\begin{bmatrix} \overrightarrow{r}, \overrightarrow{u}, \overrightarrow{v} \end{bmatrix} = 0$
- (3) $\begin{bmatrix} \overrightarrow{r}, \overrightarrow{a}, \overrightarrow{u} \times \overrightarrow{v} \end{bmatrix} = 0$ (4) $\begin{bmatrix} \overrightarrow{a}, \overrightarrow{u}, \overrightarrow{v} \end{bmatrix} = 0$

A

[திருப்புக / Turn over

MARCH 2017

dy – y tan x = cos x என்ற வகைக்கெழுச் சமன்பாட்டின் தொகைக் காரணி : (3) e^{tanx} (2) $\cos x$ (1)sec x (4) $\cot x$ The integrating factor of the differential equation $\frac{dy}{dx} - y \tan x = \cos x$ is :

- (1) sec x (3) e^{tanx} (2) $\cos x$ (4) $\cot x$
- 37. A என்ற அணியின் வரிசை 3 எனில் det (kA) என்பது :
 - (1) $k^3 \det(A)$ (2) $k^2 \det(A)$ (3) $k \det(A)$ (4) $\det(A)$

If A is a matrix of order 3, then det (kA) is :

- (1) $k^3 \det(A)$ (2) $k^2 \det(A)$ (3) $k \det(A)$ (4) $\det(A)$
- 38. $\frac{x-6}{-6} = \frac{y+4}{4} = \frac{z-4}{-8}$ is in the impliesing $\frac{x+1}{2} = \frac{y+2}{4} = \frac{z+3}{-2}$ and $\frac{z+3}{-2}$ is the set of வெட்டிக் கொள்ளும் புள்ளி :

(1) (0, 0, -4) (2) (1, 0, 0) (3) (0, 2, 0) (4) (1, 2, 0)

The point of intersection of the lines $\frac{x-6}{-6} = \frac{y+4}{4} = \frac{z-4}{-8}$ and $\frac{x+1}{2} = \frac{y+2}{4} = \frac{z+3}{2}$ is: (1) (0, 0, -4) (2) (1, 0, 0) (3) (0, 2, 0) (4) (1, 2, 0)

36.

A

ť

6673

- 39. $\operatorname{ae}^{x} + \operatorname{be}^{y} = c$; $\operatorname{pe}^{x} + \operatorname{qe}^{y} = d$ மற்றும் $\Delta_{1} = \begin{vmatrix} a & b \\ p & q \end{vmatrix}$; $\Delta_{2} = \begin{vmatrix} c & b \\ d & q \end{vmatrix}$; $\Delta_{3} = \begin{vmatrix} a & c \\ p & d \end{vmatrix}$ எனில், (x, y) இன் மதிப்பு :
 - (1) $\left(\frac{\Delta_2}{\Delta_1}, \frac{\Delta_3}{\Delta_1}\right)$ (2) $\left(\log \frac{\Delta_2}{\Delta_1}, \log \frac{\Delta_3}{\Delta_1}\right)$
 - (3) $\left(\log \frac{\Delta_1}{\Delta_3}, \log \frac{\Delta_1}{\Delta_2}\right)$ (4) $\left(\log \frac{\Delta_1}{\Delta_2}, \log \frac{\Delta_1}{\Delta_3}\right)$

If $ae^{x} + be^{y} = c$; $pe^{x} + qe^{y} = d$ and $\Delta_{1} = \begin{vmatrix} a & b \\ p & q \end{vmatrix}$; $\Delta_{2} = \begin{vmatrix} c & b \\ d & q \end{vmatrix}$; $\Delta_{3} = \begin{vmatrix} a & c \\ p & d \end{vmatrix}$ then the value of (x, y) is :

- (1) $\left(\frac{\Delta_2}{\Delta_1}, \frac{\Delta_3}{\Delta_1}\right)$ (2) $\left(\log \frac{\Delta_2}{\Delta_1}, \log \frac{\Delta_3}{\Delta_1}\right)$
- (3) $\left(\log \frac{\Delta_1}{\Delta_3}, \log \frac{\Delta_1}{\Delta_2}\right)$ (4) $\left(\log \frac{\Delta_1}{\Delta_2}, \log \frac{\Delta_1}{\Delta_3}\right)$
- 40. 5 –ன் மட்டுக்குரிய சர்வசம தொகுப்பில் {x є Z/x=5k+2, k є Z} என்பது :
 - (1) [0] (2) [5] (3) [7] (4) [2]

In congruence modulo 5, $\{x \in \mathbb{Z} | x = 5k+2, k \in \mathbb{Z}\}$ represents :

(1) [0] (2) [5] (3) [7] (4) [2]

[திருப்புக / Turn over

பகுதி - ஆ / PART - B

குறிப்பு : (i) எவையேனும் பத்து வினாக்களுக்கு விடையளிக்கவும். 10x6=60

- (ii) வினா எண் 55-க்கு கண்டிப்பாக விடையளிக்கவும். பிற வினாக்களிலிருந்து ஏதேனும் ஒன்பது வினாக்களுக்கு விடையளிக் கவும்.
- Note : (i) Answer any ten questions.
 - (ii) Question No. 55 is compulsory and choose any nine from the remaining.

41. $\begin{bmatrix} 0 & 1 & 2 & 1 \\ 2 & -3 & 0 & -1 \\ 1 & 1 & -1 & 0 \end{bmatrix}$ என்ற அணியின் தரம் காண்க.

Find the rank of the matrix $\begin{bmatrix} 0 & 1 & 2 & 1 \\ 2 & -3 & 0 & -1 \\ 1 & 1 & -1 & 0 \end{bmatrix}$.

42. 3 1 -1 2 -2 0 1 2 -1 1 2 -1

Find the inverse of the matrix $\begin{bmatrix} 3 & 1 & -1 \\ 2 & -2 & 0 \\ 1 & 2 & -1 \end{bmatrix}$.

43. (1, 1, -1) மற்றும் (-1, 0, 1) ஆகிய புள்ளிகள் வழியே செல்லக்கூடிய நேர்க்கோடு xy - தளத்தைச் சந்திக்கும் புள்ளியைக் காண்க.

Find the point of intersection of the line passing through the two points (1, 1, -1); (-1, 0, 1) and the *xy*-plane.

- 44. (i) $\vec{a} \times \vec{b} = \vec{c} \times \vec{d}$, $\vec{a} \times \vec{c} = \vec{b} \times \vec{d}$ எனில் $\vec{a} \vec{d}$ மற்றும் $\vec{b} \vec{c}$ இணை வெக்டர்கள் எனக் காட்டுக.
 - (ii) (2, −3, 1) மற்றும் (3, 1, −2) என்ற புள்ளிகளை இணைக்கும் கோட்டின் திசைக் கொசைன்களைக் காண்க.
 - (i) If $\vec{a} \times \vec{b} = \vec{c} \times \vec{d}$ and $\vec{a} \times \vec{c} = \vec{b} \times \vec{d}$, show that $\vec{a} \vec{d}$ and $\vec{b} \vec{c}$ are parallel.
 - (ii) Find the direction cosines of the line joining (2, -3, 1) and (3, 1, -2).

45. α மற்றும் β என்பவை ஒன்றுக்கொன்று இணையானது. மேலும் $\alpha = -\sqrt{2} + i$ எனில் $\alpha^2 + \beta^2 - \alpha\beta$ -ன் மதிப்பினைக் காண்க.

If α and β are complex conjugates to each other and $\alpha = -\sqrt{2} + i$ then find $\alpha^2 + \beta^2 - \alpha\beta$.

46. கலப்பெண்கள் 7+9i, -3+7i, 3+3i ஆகியவை ஆர்கன் தளத்தில் ஒரு செங்கோண முக்கோணத்தை அமைக்கும் என நிறுவுக.

Show that the points representing the complex numbers 7+9i, -3+7i, 3+3i form a right angled triangle on the Argand diagram.

47. ஒரலகு நிறையுடைய ஒரு துகள் 't' வினாடி நேரத்தில் ஏற்படுத்தும் இடப்பெயர்ச்சி x=3 cos (2t-4) எனில், 2 வினாடிகளின் முடிவில் அதன் முடுக்கம் மற்றும் இயக்க ஆற்றல் (K.E.) முதலியவற்றைக் காண்க.

[K.E. = $rac{1}{2}$ mv², m என்பது நிறை]

A particle of unit mass moves so that displacement after 't' seconds is given by $x=3 \cos (2t-4)$. Find the acceleration and kinetic energy at the end of 2 seconds.

 $[K.E. = \frac{1}{2} mv^2, m \text{ is mass }]$

[திருப்புக / Turn over

48. (i) x⁵ (4-x) இன் மாறுநிலை எண்களைக் காண்க.

- (ii) y = e^x என்ற சார்பின் குவிவிற்கான அரங்கத்தினைக் காண்க.
- (i) Find the critical numbers of $x^{\frac{5}{5}}(4-x)$.
- (ii) Determine the domain of convexity of $y = e^x$.
- 49. ஒரு வட்ட வடிவ தகட்டின் ஆரம் 24 செ.மீ. கணக்கீட்டில் ஏற்படும் அதிகபட்ச பிழை 0.02 செ.மீ. எனில், வகையீட்டைப் பயன்படுத்தி வட்ட வடிவ தகட்டின் பரப்பு கணக்கிடும்போது ஏற்படும் மிக அதிக பிழை மற்றும் சார்பிழையைக் காண்க.

The radius of a circular disc is given as 24 cm. with a maximum error in measurement of 0.02 cm. Estimate the maximum error in the calculated area of the disc and compute the relative error by using differentials.

A

Solve : $(D^2 - 4D + 1) y = x^2$

- 51. q v [p v (~q)] என்ற கூற்று மெய்ம்மையா அல்லது முரண்பாடா என்பதைக் காண்க. Verify whether the statement q v [p v (~q)] is a tautology or a contradiction.
- 52. (p ^ q) v (~ r)-க்குரிய மெய் அட்டவணையை அமைக்க.

Construct the truth table for $(p \land q) \lor (\sim r)$.

- 53. (i) Z ஒரு திட்ட இயல்நிலை மாறி என்க. P (Z < c) = 0.05 எனில் c -ன் மதிப்பு காண்க. இங்கு P [0 < Z < 1.65] = 0.45
 - (ii) ஒரு ஈருறுப்புப் பரவலின் சராசரி மற்றும் பரவற்படியின் வித்தியாசம் 1 ஆகும். மேலும் அவற்றின் வர்க்கங்களின் வித்தியாசம் 11 எனில் n இன் மதிப்பு காண்க.
 - Let Z be a standard normal variate. Find the value of c if P (Z < c) = 0.05. Here P
 [0 < Z < 1.65] = 0.45
 - (ii) The difference between the mean and the variance of a Binomial distribution is 1 and the difference between their squares is 11. Find n.
- 54. ஒரு பகடை இருமுறை உருட்டப்படுகிறது. அதன் மேல் உள்ள எண் ஒற்றைப்படை எண்ணாக இருத்தல் வெற்றியாகக் கருதப்படுகிறது. வெற்றியின் நிகழ்தகவுப் பரவலின் சராசரி மற்றும் பரவற்படியைக் காண்க.

A die is tossed twice. A success is getting an odd number on a toss. Find the mean and the variance of the probability distribution of the number of successes.

55. (a) மையம் (2, 5); இயக்குவரைகளுக்கு இடைப்பட்ட தூரம் 15, குவியங்களுக்கு இடைப்பட்ட தூரம் 20; மேலும் குறுக்கச்சு y -அச்சுக்கு இணையாக உள்ள அதிபரவளையத்தின் சமன்பாடு காண்க.

அல்லது

- (b) 2ay² = x (x a)², a > 0 என்ற வளைவரையின் கண்ணியினை, x அச்சைப் பொறுத்து சுழற்றப்படும்போது கிடைக்கும் திடப்பொருளின் கன அளவினைக் காண்க.
- (a) Find the equation of the hyperbola if the centre is (2, 5); the distance between the directrices is 15; the distance between the foci is 20 and the transverse axis is parallel to y -axis.

OR

A

(b) Find the volume of the solid obtained by revolving the loop of the curve $2ay^2 = x (x-a)^2$ about x -axis. Here a > 0.

பகுதி – இ / PART - C

- குறிப்பு : (i) எவையேனும் பத்து வினாக்களுக்கு விடையளிக்கவும். 10x10=100
 - (ii) வினா எண் 70-க்கு கண்டிப்பாக விடையளிக்கவும். பிற வினாக்களிலிருந்து ஏதேனும் ஒன்பது வினாக்களுக்கு விடையளிக் கவும்.
- Note : (i) Answer any ten questions.
 - (ii) Question No. 70 is compulsory and choose any nine from the remaining.
- அணிக் கோவையினைப் பயன்படுத்தி தீர்வு காண்க.

x+y+2z=4 2x+2y+4z=8 3x+3y+6z=12Solve, x+y+2z=4 2x+2y+4z=8 3x+3y+6z=12 by using determinant method.

- 57. $\cos(A+B) = \cos A \cos B \sin A \sin B$ என்பதை வெக்டர் முறையில் நிறுவுக. $\cos(A+B) = \cos A \cos B - \sin A \sin B$: prove by vector method.
- 58. 3 i +4 j +2 k, 2 i -2 j k மற்றும் 7 i + k ஆகியவற்றை நிலை வெக்டர்களாகக் கொண்ட புள்ளிகள் வழியே செல்லும் தளத்தின் வெக்டர் மற்றும் கார்டீசியன் சமன்பாடுகளைக் காண்க.

Find the vector and Cartesian equations of the plane passing through the points with position vectors $3\vec{i}+4\vec{j}+2\vec{k}$, $2\vec{i}-2\vec{j}-\vec{k}$ and $7\vec{i}+\vec{k}$.

- 60. ஒரு ராக்கெட் வெடியானது கொளுத்தும்போது அது ஒரு பரவளையப் பாதையில் செல்கிறது. அதன் உச்ச உயரம் 4 மீ -ஐ எட்டும்போது அது கொளுத்தப்பட்ட இடத்திலிருந்து கிடைமட்ட தூரம் 6 மீ தொலைவிலுள்ளது. இறுதியாக கிடைமட்டமாக 12 மீ தொலைவில் தரையை வந்தடைகிறது எனில் புறப்பட்ட இடத்தில் தரையுடன் ஏற்படுத்தப்படும் எறிகோணம் காண்க.

On lighting a rocket cracker it gets projected in a parabolic path and reaches a maximum height of 4 mts when it is 6 mts away from the point of projection. Finally it reaches the ground 12 mts away from the starting point. Find the angle of projection.

61. ஒரு நுழைவு வாயிலின் மேற்கூரையானது அரை-நீள்வட்ட வடிவத்தில் உள்ளது. இதன் அகலம் 20 அடி. மையத்திலிருந்து அதன் உயரம் 18 அடி மற்றும் பக்கச் சுவர்களின் உயரம் 12 அடி எனில் ஏதேனும் ஒரு பக்கச் சுவரிலிருந்து 4 அடி தூரத்தில் மேற்கூரையின் உயரம் என்னவாக இருக்கும்?

The ceiling in a hallway 20 ft wide is in the shape of a semi ellipse and 18 ft high at the centre. Find the height of the ceiling 4 feet from either wall if the height of the side walls is 12 ft.

62. x+2y-5=0 -ஐ ஒரு தொலைத் தொடுகோடாகவும், (6, 0) மற்றும் (-3, 0) என்ற புள்ளிகள் வழியே செல்லக் கூடியதுமான செவ்வக அதிபரவளையத்தின் சமன்பாடு காண்க.

Find the equation of the rectangular hyperbola which has for one of its asymptotes the line x+2y-5=0 and passes through the points (6, 0) and (-3, 0).

63. பரவளையம் y² = 2x மீது (1, 4) என்ற புள்ளிக்கு மிக அருகிலுள்ள புள்ளியைக் காண்க.

Find the point on the parabola $y^2 = 2x$ that is closest to the point (1, 4).

A

[திருப்புக / Turn over

MARCH 2017

64.
$$u = \frac{x}{y^2} - \frac{y}{x^2}$$
 என்ற சார்புக்கு $\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x}$ என்பதை சரிபார்க்க.

If
$$u = \frac{x}{y^2} - \frac{y}{x^2}$$
 then verify that $\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x}$.

65. $\frac{x^2}{r^2} + \frac{y^2}{r^2} = 1$ என்ற நீள்வட்டத்தினால் உருவாகும் அரங்கத்தின் பரப்பைக் தொகையீட்டின் மூலம் காண்க.

Find the area of the region bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, by integration.

x = a (t $-\sin t$), $y = a(1 - \cos t)$ என்ற வளைவரையின் நீளத்தினை t = 0 முதல் $t = \pi$ 66. வரை கணக்கிடுக.

Find the length of the curve x = a (t - sin t), $y = a(1 - \cos t)$ between t = 0 and t = π .

வெப்பநிலை 15°C உள்ள ஒரு அறையில் வைக்கப்பட்டுள்ள தேநீரின் வெப்பநிலை 67. 100°C ஆகும். அது 5 நிமிடங்களில் 60°C ஆக குறைந்து விடுகிறது. மேலும் 5 நிமிடம் கழித்து தேநீரின் வெப்பநிலையினை காண்க.

A cup of coffee at temperature 100°C is placed in a room whose temperature is 15°C and it cools to 60°C in 5 minutes. Find its temperature after a further interval of 5 minutes.

 $68. \quad \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} \omega & 0 \\ 0 & \omega^2 \end{pmatrix}, \begin{pmatrix} \omega^2 & 0 \\ 0 & \omega \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & \omega^2 \\ \omega & 0 \end{pmatrix}, \begin{pmatrix} 0 & \omega \\ \omega^2 & 0 \end{pmatrix} \right\}$ என்கிற

அணிப்பெருக்கலின் கீழ் ஒரு குலத்தை அமைக்கும் எனக் காட்டுக. இங்கு $\omega^3 = 1, \ \omega \neq 1.$

Show that $\begin{cases} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} \omega & 0 \\ 0 & \omega^2 \end{pmatrix}, \begin{pmatrix} \omega^2 & 0 \\ 0 & \omega \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & \omega^2 \\ \omega & 0 \end{pmatrix}, \begin{pmatrix} 0 & \omega \\ \omega^2 & 0 \end{pmatrix} \end{cases}, \text{ where } \omega^3 = 1,$

 $\omega \neq 1$ form a group with respect to matrix multiplication.

MARCH 2017

கணம்

69.
$$f(x) = \begin{cases} 30x^4 e^{-6x^5} ; x > 0 \\ 0 ; & \text{injopialaging} \end{cases}$$

என்ற சார்பு நிகழ்தகவு அடர்த்தி சார்பா எனக் காண்க. அவ்வாறெனில் F(1) -ன் மதிப்பு காண்க.

Verify
$$f(x) = \begin{cases} 30x^4 e^{-6x^5} ; x > 0 \\ 0 ; \text{ Otherwise} \end{cases}$$

for p.d.f. If f(x) is a p.d.f. then find F(1).

70. (a) x² + y² = 52 என்ற வட்டத்திற்கு 2x + 3y = 6 என்ற நோகோட்டிற்கு இணையாக வரையப்படும் தொடுகோடுகளின் சமன்பாடுகளைக் காண்க.

அல்லது

(b)
$$(x+y)^2 rac{\mathrm{d}\,y}{\mathrm{d}\,x} = \mathrm{a}^2$$
 என்ற வகைக்கெழு சமன்பாட்டினைத் தீர்க்க.

(a) Find the equations of those tangents to the circle $x^2 + y^2 = 52$ which are parallel to the straight line 2x + 3y = 6.

OR

(b) Solve the differential equation
$$(x+y)^2 \frac{dy}{dx} = a^2$$
.

A

-000-