Quarterly Common Exam., September - 2017			
Time : 3-00 Hours] Part-III MATHEMATICS [Maximum Marks : 200 Instructions:- 1. Check the question paper for fairness of printing. If there is any lack of fairness, inform the Hall Supervisor immediately. 2. Use Black or Blue ink to write and pencil to draw diagrams.			
	1-10		
Note	(1) All the questions are compulsory		
	(ii) Choose the most suitable answer from the given four alternatives and write the option code and the corresponding answer.		
1.	The curve $y^2 = (x-1)(x-2)^2$ has (1) two loops between $x = 0$ and $x = 2$ (2) one loop between $x = 0$ and $x = 1$ (3) one loop between $x = 1$ and $x = 2$ (4) no loop		
2.	If a , b are two unit vectors and θ is the angle between them, then $(a+b)$ is		
3.	(1) $\theta = \pi/3$ (2) $\theta = \pi/4$ (3) $\theta = \pi/2$ (4) $\theta = 2\pi/3$ The non-parametric vector equation of a plane passing through the points whose p.v's are a, b and parallel to v is		
	(1) $[\vec{r} - \vec{a}, \vec{b} - \vec{a}, \vec{v}] = 0$ (2) $[\vec{r} - \vec{b}, -\vec{a}, \vec{v}] = 0$ (3) $[\vec{a}\vec{b}, \vec{v}] = 0$ (4) $[\vec{r}, \vec{a}, \vec{b}] = 0$		
4.	The vectors $2i+3j+4k$ and $ai+bj+ck$ are perpendicular when (1) $a=2, b=3, c=-4$ (2) $a=4, b=4, c=5$ (3) $a=4, b=4, c=-5$ (4) $a=-2, b=3, c=4$		
5.	An asymptote to the curve $y^2(a+2x) = x^2(3a-x)$ is (1) $x = 3a$ (2) $x = -a/2$ (3) $x = a/2$ (4) $x = 0$		
6.	The locus of the foot of perpendicular from the focus on any tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is		
	(1) $x^2 + y^2 = a^2 - b^2$ (2) $x^2 + y^2 = a^2$ (3) $x^2 + y^2 = a^2 + b^2$ (4) $x = 0$		
7.	The following two lines $\frac{x-1}{2} = \frac{y-1}{-1} = \frac{z}{1}$ and $\frac{x-2}{3} = \frac{y-1}{-5} = \frac{z-1}{2}$ are		
8.	(1) parallel (2) intersecting (3) skew (4) perpendicular The percentage error in the 11th root of the number 28 is approximately times the percentage error in 28 (1) 1/28 (2) 1/11 (3) 11 (4) 28		
9.	The work done by the force $\vec{F} = a\vec{i} + \vec{j} + \vec{k}$ in moving the point of application from (1, 1, 1) to (2, 2, 2) along a straight line is given to be 5 units. The value of a is		
10.	(1) -3 (2) 3 (3) 8 (4) -8 The asymptotes to the hyperbola $36y^2 - 25x^2 + 900 = 0$ are		
•	(1) $y = \pm \frac{6}{5}x$ (2) $y = \pm \frac{5}{6}x$ (3) $y = \pm \frac{36}{25}x$ (4) $y = \pm \frac{25}{36}x$		
11.	If $\overrightarrow{PR} = 2\overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}$, $\overrightarrow{QS} = -\overrightarrow{i} + 3\overrightarrow{j} + 2\overrightarrow{k}$ then the area of the quadrilateral <i>PQRS</i> is		
	(1) $5\sqrt{3}$ (2) $10\sqrt{3}$ (3) $\frac{5\sqrt{3}}{2}$ (4) $\frac{3}{2}$		
12.	The value of $[\vec{i} + \vec{j}, \vec{j} + \vec{k}, \vec{k} + \vec{i}]$ is equal to (1) 0 (2) 1 (3) 2 (4) 4		
13.	The point of intersection of the tangents at $t_1 = t$ and $t_2 = 3t$ to the parabola $y^2 = 8x$ is		
	(1) $(6t^2, 8t)$ (2) $(8t, 6t^2)$ (3) $(t^2, 4t)$ (4) $(4t, t^2)$		
14.	(1) $(6t^2, 8t)$ (2) $(8t, 6t^2)$ (3) $(t^2, 4t)$ (4) $(4t, t^2)$ If $u = \sin^{-1}\left(\frac{x^4 + y^4}{x^2 + y^2}\right)$ and $f = \sin u$ then f -is a homogenous function of degree		
1.5	(1) 0 (2) 1 (3) 2 (4) 4 The tangents at the end of any focal chord to the parabola $y^2 = 12x$ intersect on the line		
A Carlos	(1) 2 0 (2) $w + 2 = 0$ (3) $v + 3 = 0$ (4) $v - 3 = 0$		
16.	If $a_{\mu}(h_{\mu}, a) = (a_{\nu}, h) \times c$ for non-copianal vectors $a + b + c$ vectors a, b, c then		
	(1) a parallel to \vec{b} (2) \vec{b} parallel to \vec{c} (3) \vec{c} parallel to \vec{a} (4) $\vec{a} + \vec{b} + \vec{c} = 0$		
17.	$([z] \alpha) = (1) A (2) 8 (3) 6 (4) 18$		
18.	If the normal to the rectangular hyperbola $xy = c^{-\alpha t} t_1$ meets the curve again at t_2 then		
	$t_1^3 t_2 = (1) 1 (2) 0 (3) - 1 (4) - 2$ The point of intersection of the line $\vec{r}(\vec{i} - \vec{k}) + t(3\vec{i} + 2\vec{i} + 7\vec{k})$ and the plane $\vec{r}.(\vec{i} + \vec{j} - \vec{k}) = 8$ is		
	(1) $(8, 6, 22)$ (2) $(-8, -6, -22)$ (3) $(4, 3, 11)$ (4) $(-4, -3, -11)$		

		-2-
	20.	The directrices of the hyperbola $x^2 - 4(y-3)^2 = 16$ are
		(1) $y = \pm \frac{8}{\sqrt{5}}$ (2) $x = \pm \frac{8}{\sqrt{5}}$ (3) $y = \pm \frac{\sqrt{5}}{8}$ (4) $x = \pm \frac{\sqrt{5}}{8}$
	21.	If $A + iB = (a_1 + ib_1)(a_2 + ib_2)(a_3 + ib_3)$ then $A^2 + B^2$ is
		(1) $a_1^2 + b_1^2 + a_2^2 + b_2^2 + a_3^2 + b_3^2$ (2) $(a_1 + b_2 + a_3)^2 + (b_1 + b_2 + b_3)^2$
•	22.	(3) $(a_1^2 + b_1^2)(a_2^2 + b_2^2)(a_3^2 + b_3^2)$ (4) $(a_1^2 + a_2^2 + a_3^2)(b_1^2 + b_2^2 + b_3^2)$ If <i>I</i> is the unit matrix of order <i>n</i> , where $k \neq 0$ is a constant then $adj(KI) =$ (1) $k^n (adj I)$ (2) $k(adj I)$ (3) $k^2 (adj I)$ (4) $k^{n-1} (adj I)$
	23.	The value of $i + i^{22} + i^{23} + i^{24} + i^{25}$ (1) i (2) $-i$ (3) 1 (4) -1
	24.	The value of $\left[\frac{-1+i\sqrt{3}}{2}\right]^{100} + \left[\frac{-1+i\sqrt{3}}{2}\right]^{100}$ is (1) 2 (2) 0 (3) -1 (4) 1
	25. 26.	If z represents a complex number then $\arg(z) + \arg(z)$ is (1) $\pi/4$ (2) $\pi/2$ (3) 0 (4) π
	27.	(1) $(-\infty, 1)$ (2) $(4, \infty)$ (3) $(1, 4)$ (4) everywhere The system of equations $ax + y + z = 0$, $x + by + z = 0$, $z + y + cz = 0$ has a non-trivial solution then
		$\frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} = (1) \ 1 \ (2) \ 2 \ (3) \ -1 \ (4) \ 0$
	28.	If the gradient of a curve changes from positive just before P to negative just after then p in a (1) minimum point (2) maximum point (3) inflexion point (4) discontinuous point (1) p and f f (c) axists
	29.	The statem ent lf has a local extremum (minimum or maximum) at 'c' and if $f'(c)$ exists then $f'(c) = 0$ is (1) the extreme value theorem (2) Fermat's theorem
		(3) Low of mean (4) Kolle's theorem
	30.	If $(m-5) + i(n+4)$ is the complex conjugate at $(2m+3) + i(3n-2)$ then (n,m) are (1) $(-\frac{1}{2}, -8)$ (2) $(-\frac{1}{2}, 8)$ (3) $(\frac{1}{2}, -8)$ (4) $(\frac{1}{2}, 8)$
		$\begin{bmatrix} \lambda & -1 & 0 \end{bmatrix}$
	31.	If the rank of the matrix $\begin{bmatrix} 0 & \lambda & -1 \\ -1 & 0 & \lambda \end{bmatrix}$ is 2 then λ is
		(1) 1 (2) 2 (3) 3 (4) any real number
	32.	If A is a square matrix of order n then $ adj A = (1) A ^2 (2) A '' (3) A ^{n-1} (4) A $
	33.	If ω is the <i>n</i> th root of unity then (1) $1 + \omega^2 + \omega^4 + = \omega + \omega^3 + \omega^5 + (2) \omega'' = 0$ (3) $\omega'' = 1$ (4) $\omega = \omega''^{-1}$
		- i Gulara of (O isin O) where p and g are non-zero integers prime to
	34.	$1 - 4 - \pi i \alpha = (1) $
	35.	each other is (1) $p'(2) q'(3) p'(4) q'(4) q'(4$
	26	(1) b/x (2) a/x (3) x/b (4) x/a . If A and B are matrices conformable to multiplication then $(AB)^T$ is
		(1) $A^T B^T$ (2) $B^T A^T$ (3) AB (4) BA
		at least one 2×2 minor of Δ_x or Δ_y or Δ_z in their divergence of the system is (1) consistent (2) inconsistent (3) consistent and the system reduces to two equations
		If the normal to the curve $x^{73} + y^{73} = a^{73}$ makes are angele θ with the x axis then the stope of the normal is (1) $-\cot \theta$ (2) $\tan \theta$ (3) $-\tan \theta$ (4) $\cot \theta$
		The 'c' of Lagranges mean value theorem for the function $f(x) = x^2 + 2x - 1 a = 0, b = 1$ is (1) -1 (2) 1 (3) 0 (2) $\frac{1}{2}$
	40	The value of $\lim_{x \to 0} \frac{a^x - b^x}{c^x - d^x}$ (1) ∞ (2) 0 (3) $\log \frac{ab}{cd}$ (4) $\frac{\log \frac{a}{b}}{\log \frac{c}{d}}$

c'-d

.

Part - B

- 3 -

 $10 \times 6 = 60$

Note : (i) Answer any ten questions (ii) Question No. 55 is compulsory and choose nine questions from remaining

Part - C

- 4 -

Note: (i) Answer any ten questions (ii) Question No. 70 is compulsory and choose nine questions from remaining Solve by matrix inversion method : 2x - y + z = 7, 3x + y - 5z = 13, x + y + z = 5For what value of μ the equations x + y + 3z = 0, $4x + 3y + \mu z = 0$, 2x + y + 2z = 056. 57. have a (i) trivial solution (ii) non-trivial solution Attitudes of a triangle are concurrent - prove by vector method. 58. Show that the lines $\frac{x-1}{1} = \frac{y+1}{-1} = \frac{z}{3}$ and $\frac{z-2}{1} = \frac{y-1}{2} = \frac{-z-1}{1}$ intersect and find their 59. point of intersection. If α and β are the roots of the equation $x^2 - 2px + (p^2 + q^2) = 0$ and $\tan \theta = \frac{q}{v + p}$ 60. show that $\frac{(y+\alpha)^n + (y+\beta)^n}{\alpha+\beta} = q^{n-1} \frac{\sin n\theta}{\sin^n \theta}$ Solve the equation $x^9 + x^5 - x^4 - 1 = 0$. 61. Assume that water issuing from the end of a horizontal pipe, 7.5m above the ground, describes 62. a parabolic path. The vertex of the parabolic path is the end of the pipe. At a position 2.5m below the line of the pipe, the flow of water has curved outward 3 m beyond the vertical line through the end of the pipe. How far beyond this vertical line will the water strike the ground? Find the eccentricity, centre, foci and vertices of the hyperbola 63. $x^{2} - 4y^{2} + 6x + 16y - 11 = 0$ and draw the diagram. Prove that the line 3x - y - 5 = 0 touches the hyperbola $2x^2 - 3y^2 = 6$ and find its point 64. of contact. Gravel is being dumped from a conveyor belt at a rate of 30 ft3/min and its coarsened 65. such that it forms a pile in the shape of a cone whose base diameter and height are always equal. How fast is the height of the pile increasing when the pile is 10 ft high? Find the absolute maximum and absolute minimum values of 66. $f(x) = x - 2\sin x, 0 \le x \le 2\pi$ Find the intervals of concavity and the points of inflection of the function 67. $y = 12x^2 - 2x^3 - x^4$ If $w = u^2 e^v$ where $u = \frac{x}{v}$ and $v = y \log x$, find $\frac{\partial w}{\partial x}$ and $\frac{\partial w}{\partial v}$ 68. Trace the curve : $y = x^3$ 69. * a) Derive the equation of the plane in the intercept form (or) 70. b) The arch of a bridge is in the shape of a semi-ellipse having a horizontal span of 40 ft and 16 ft high at the centre. How high is the arch, 9 ft from the right or left of the centre?