Jain College, Jayanagar II PUC Mock Paper I - Jan 2020

Subject: II PUC Mathematics (35)

Duration: 3 hours 15 minutes

PART-A

I. Answer all the TEN questions:

10X1=10

Max. Marks: 100

- 1. Find whether operation * on Q defined by a*b = a+ab is communication or not?
- 2. Find the principal value branch of tan⁻¹x.
- 3. Define scalar matrix.
- 4. If $\begin{vmatrix} 3 & x \\ x & 1 \end{vmatrix} = \begin{vmatrix} 3 & 2 \\ 4 & 1 \end{vmatrix}$ find value of x.
- 5. If $y = \cos(\sqrt{x})$. Find dy/dx.
- 6. Evaluate $\int e^{x} (\tan^{-1} x + \frac{1}{1 + x^{2}}) dx$.
- 7. Find the projection of the vector $\vec{a} = 2\hat{i} + 3\hat{j} + 2\hat{k}$ on the vector $\vec{b} = \hat{i} + 2\hat{j} + \hat{k}$
- 8. If a line has directions -18, 12, -4 then find directions
- 9. Define corner points in LPP.
- 10. A fair die is rolled if $E = \{1, 2, 4, 6\}$ $F = \{1,3\}$ find P(E/F)

PART-B

II. Answer any TEN questions:

10X2=20

- 11. Show that $f: A \to B \& g: B \to C$ are one-one then $g \cdot f: A \to C$ is also one-one.
- 12. Prove that $\tan^{-1} \left\lceil \frac{1}{2} \right\rceil + \tan^{-1} \left\lceil \frac{2}{11} \right\rceil = \tan^{-1} \left\lceil \frac{3}{4} \right\rceil$
- 13. Write is simplest from : $\tan^{-1} \left[\frac{\cos x \sin x}{\cos x + \sin x} \right]$, $0 < x < \pi$,
- 14. Find the area of the triangle whose vertices are (1,0), (6,0) & (4,3) using determinant.
- 15. If $\sqrt{x} + \sqrt{y} = 10$ then prove that $\frac{dy}{dx} = -\sqrt{\frac{y}{x}}$
- 16. Find $\frac{dy}{dx}$ if $y = \frac{1}{\sec^{-1}(2x^2 1)}$.
- 17. Find the slope of the tangent to the curve $y = x^2 x + 1$ at the point whose x co-ordinate is 2.
- 18. Evaluate $\int \tan^{-1} \left(\frac{\sin 2x}{1 + \cos 2x} \right) dx$.
- 19. Evaluate $\int \frac{\sin \sqrt{x}}{\sqrt{x}} dx$.
- 20. Determine the order and degree of $(y'')^2 + (y'')^3 + (y')^4 + y = 0$
- 21. Find the area of the triangle whose adjacent sides are determined by the vectors. $\vec{a} = -2\hat{i} 5\hat{k} \& \vec{b} = \hat{i} 2\hat{i} \hat{k}$.
- 22. Prove that $\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} + \vec{d} \end{bmatrix} = \begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix} + \begin{bmatrix} \vec{a} & \vec{b} & \vec{d} \end{bmatrix}$.
- 23. Find the distance of point (3,-2,1) from the plane 2x-y+2z+3=0.

PART-C

III. Answer any TEN questions:

10X3=30

- 25. Show that the relation R in the set Z of integers given by $R = \{(x,y): |x-y| \text{ is even}\}$ is an equivalence relation.
- 26. Solve for x : $\tan^{-1} \left(\frac{x-1}{x-2} \right) + \tan^{-1} \left(\frac{x+1}{x+2} \right) = \frac{\pi}{4}$.
- 27. If A & B are invertible matrices of same order then, show that $(AB)^{-1} = B^{-1} A^{-1}$.
- 28. If $x = a (\theta + \sin \theta) y = a(1 \cos \theta)$. Prove that $\frac{dy}{dx} = \tan \left(\frac{\theta}{2}\right)$.
- 29. Verify mean value theorem if $f(x) = x^2 4x 3$ in the interval [1,4].
- 30. Find the points of local maxima and minima of the function f given by $f(x) = 2x^3 6x^2 + 6x + 5$.
- 31. If $y = (x + 3)^2 (x+4)^3 (x+5)^4$, Find dy/dx.
- 32. Evaluate $\int \frac{\cos x}{(1-\sin x)(2-\sin x)} dx$.
- 33. Evaluate $\int x \tan^{-1} x \, dx$.
- 34. Find the area under the given curves and given lines $y = x^4$, x = 1, x = 5 and x axis.
- 35. Solve $\sec^2 x \tan y \, dx + \sec^2 y \tan x \, dy = 0$.
- 36. Show that the four points A, B, C & D with position vector $4\hat{i} + 5\hat{j} + \hat{k}$, $-\hat{j} \hat{k}$, $3\hat{i} + 9\hat{j} + 4\hat{k}$ & $4(-\hat{i} + \hat{j} + \hat{k})$ respectively are coplanar.
- 37. Find the angle between the line $\frac{x+1}{2} = \frac{y}{3} = \frac{z-3}{6}$ & the plane 10x + 2y 11 Z = 3
- 38. An urn contains 5 red & 5 black balls. A ball is drawn at random, its colour is noted and is returned to the urn. Morevers, 2 additional balls of the colour drawn are put in the urn & then a ball is drawn at random. What is the probability that 2nd ball is red

PART-D

IV. Answer any SIX of the following:

6X5=30

- 39. Consider $f: R \to [4, \infty]$, given by $f(x) = x^2 + 4$. Show that f is invertible with inverse f^{-1} of f is given by $f^{-1}(y) = \sqrt{y-4}$, R^+ is non negative real no.
- 40. If $A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix}$ prove that $A^3 6A^2 + 7A + 2I = 0$.

$$2x + 3y + 3z = 5$$

41. Solve by martix method x-2y+z=-4

$$3x - y - 2z = 3$$

- 42. If y = 500 e^{7x} + 600 e^{-7x} prove that $\frac{d^2y}{dx^2}$ = 49 y.
- 43. A ballon which always remains spherical on inflation is being inflated by pumping in 900 cm³ / sec. Find the rate at which the radius of the ballon increases when the radius is 15 cm?
- 44. Find the integral of $\int \frac{1}{a^2 + x^2} dx$ with respect to x and hence evaluate $\int \frac{1}{9x^2 + 6x + 5} dx$.
- 45. Using integration find the area of the circle $x^2 + y^2 = a^2$.
- 46. Find the general solution of the differential equation $\frac{dy}{dx} + (\sec x)y = \tan x$
- 47. Derive the equation in normal form in vector form & Cartesian form

V. Answer any one of the following:

- 1X10=10
- 49. a) Solve the following LPP graphically minimize Z=200x+500y s.t.c. $x+2y \ge 10$, $3x+4y \le 24$, $x \ge 0, y \ge 0.$
- b) Prove that $\begin{vmatrix} 1 & a & bc \\ 1 & b & ca \\ 1 & c & ab \end{vmatrix} = (a-b)(b-c)(c-a)$ 50. a) Prove that $\int_{0}^{a} f(x) dx = \int_{0}^{a} f(a-x) dx. \text{ hence evaluate } \int_{0}^{\pi} \frac{\sin^{3/2} x}{\sin^{3/2} x + \cos^{3/2} x} dx.$ $\left[2x \quad \text{if } x < 0 \right]$
 - b) Discuss the continuity of the function $f(x) = \begin{cases} 2x & \text{if } x < 0 \\ 0 & \text{if } 0 \le x \le 1 \\ 4x & \text{if } x > 1 \end{cases}$
