Jain College, Jayanagar
 II PUC Mock Paper I - Jan 2020
 Subject: II PUC Mathematics (35)

PART-A

I. Answer all the TEN questions:

1. Find whether operation * on Q defined by $\mathrm{a} * \mathrm{~b}=\mathrm{a}+\mathrm{ab}$ is communication or not?
2. Find the principal value branch of $\tan ^{-1} x$.
3. Define scalar matrix.
4. If $\left|\begin{array}{ll}3 & x \\ x & 1\end{array}\right|=\left|\begin{array}{ll}3 & 2 \\ 4 & 1\end{array}\right|$ find value of x.
5. If $y=\cos (\sqrt{x})$. Find dy/dx.
6. Evaluate $\int e^{x}\left(\tan ^{-1} x+\frac{1}{1+x^{2}}\right) d x$.
7. Find the projection of the vector $\vec{a}=2 \hat{i}+3 \hat{j}+2 \hat{k}$ on the vector $\vec{b}=\hat{i}+2 \hat{j}+\hat{k}$
8. If a line has directions $-18,12,-4$ then find directions
9. Define corner points in LPP.
10. A fair die is rolled if $E=\{1,2,4,6\} F=\{1,3\}$ find $P(E / F)$

PART-B

II. Answer any TEN questions:
$10 \times 2=20$
11. Show that $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ \& $\mathrm{g}: \mathrm{B} \rightarrow \mathrm{C}$ are one-one then g . $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{C}$ is also one-one.
12. Prove that $\tan ^{-1}\left[\frac{1}{2}\right]+\tan ^{-1}\left[\frac{2}{11}\right]=\tan ^{-1}\left[\frac{3}{4}\right]$
13. Write is simplest from : $\tan ^{-1}\left[\frac{\cos x-\sin x}{\cos x+\sin x}\right], 0<\mathrm{x}<\pi$,
14. Find the area of the triangle whose vertices are $(1,0),(6,0) \&(4,3)$ using determinant.
15. If $\sqrt{x}+\sqrt{y}=10$ then prove that $\frac{d y}{d x}=-\sqrt{\frac{y}{x}}$
16. Find $\frac{d y}{d x}$ if $y=\frac{1}{\sec ^{-1}\left(2 x^{2}-1\right)}$.
17. Find the slope of the tangent to the curve $\mathrm{y}=\mathrm{x}^{2}-\mathrm{x}+1$ at the point whose x co-ordinate is 2 .
18. Evaluate $\int \tan ^{-1}\left(\frac{\sin 2 x}{1+\cos 2 x}\right) d x$.
19. Evaluate $\int \frac{\sin \sqrt{x}}{\sqrt{x}} d x$.
20. Determine the order and degree of $\left(y^{\prime \prime}\right)^{2}+\left(y^{\prime \prime}\right)^{3}+\left(y^{\prime}\right)^{4}+y=0$
21. Find the area of the triangle whose adjacent sides are determined by the vectors. $\vec{a}=-2 \hat{i}-5 \hat{k} \& \vec{b}=\hat{i}-2 \hat{j}-\hat{k}$.
22. Prove that $\left[\begin{array}{ll}\vec{a} & \vec{b} \\ \vec{c}+\vec{d}\end{array}\right]=\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]+\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{d}\end{array}\right]$.
23. Find the distance of point $(3,-2,1)$ from the plane $2 x-y+2 z+3=0$.
24. Find the probability distribution of numbers of heads in two tosses of a coin.

PART-C

III. Answer any TEN questions:
$10 \times 3=30$
25. Show that the relation R in the set Z of integers given by $\mathrm{R}=\{(\mathrm{x}, \mathrm{y}):|x-y|$ is even $\}$ is an equivalence relation.
26. Solve for $\mathrm{x}: \tan ^{-1}\left(\frac{x-1}{x-2}\right)+\tan ^{-1}\left(\frac{x+1}{x+2}\right)=\frac{\pi}{4}$.
27. If $A \& B$ are invertible matrices of same order then, show that $(A B)^{-1}=B^{-1} A^{-1}$.
28. If $\mathrm{x}=\mathrm{a}(\theta+\sin \theta) \mathrm{y}=\mathrm{a}(1-\cos \theta)$. Prove that $\frac{d y}{d x}=\tan \left(\frac{\theta}{2}\right)$.
29. Verify mean value theorem if $f(x)=x^{2}-4 x-3$ in the interval $[1,4]$.
30. Find the points of local maxima and minima of the function f given by $f(x)=2 x^{3}-6 x^{2}+6 x+5$.
31. If $y=(x+3)^{2}(x+4)^{3}(x+5)^{4}$, Find dy/dx.
32. Evaluate $\int \frac{\cos x}{(1-\sin x)(2-\sin x)} d x$.
33. Evaluate $\int x \tan ^{-1} x d x$.
34. Find the area under the given curves and given lines $y=x^{4}, x=1, x=5$ and x-axis.
35. Solve $\sec ^{2} x \tan y d x+\sec ^{2} y \tan x d y=0$.
36. Show that the four points $\mathrm{A}, \mathrm{B}, \mathrm{C} \& \mathrm{D}$ with position vector $4 \hat{i}+5 \hat{j}+\hat{k},-\hat{j}-\hat{k}, 3 \hat{i}+9 \hat{j}+4 \hat{k}$ \& $4(-\hat{i}+\hat{j}+\hat{k})$ respectively are coplanar.
37. Find the angle between the line $\frac{x+1}{2}=\frac{y}{3}=\frac{z-3}{6} \&$ the plane $10 x+2 y-11 Z=3$
38. An urn contains 5 red \& 5 black balls. A ball is drawn at random, its colour is noted and is returned to the urn. Morevers, 2 additional balls of the colour drawn are put in the urn \& then a ball is drawn at random. What is the probability that $2^{\text {nd }}$ ball is red

PART-D

IV. Answer any SIX of the following:
39. Consider $f: R+\rightarrow[4, \infty]$, given by $f(x)=x^{2}+4$. Show that f is invertible with inverse f^{-1} of f is given by $\mathrm{f}^{-1}(\mathrm{y})=\sqrt{y-4}, \mathrm{R}^{+}$is non negative real no.
40. If $A=\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3\end{array}\right]$ prove that $\mathrm{A}^{3}-6 \mathrm{~A}^{2}+7 \mathrm{~A}+2 \mathrm{I}=0$.

$$
2 x+3 y+3 z=5
$$

41. Solve by martix method $x-2 y+z=-4$

$$
3 x-y-2 z=3
$$

42. If $\mathrm{y}=500 \mathrm{e}^{7 \mathrm{x}}+600 \mathrm{e}^{-7 \mathrm{x}}$ prove that $\frac{d^{2} y}{d x^{2}}=49 y$.
43. A ballon which always remains spherical on inflation is being inflated by pumping in $900 \mathrm{~cm}^{3} / \mathrm{sec}$. Find the rate at which the radius of the ballon increases when the radius is 15 cm ?
44. Find the integral of $\int \frac{1}{a^{2}+x^{2}} d x$ with respect to x and hence evaluate $\int \frac{1}{9 x^{2}+6 x+5} d x$.
45. Using integration find the area of the circle $x^{2}+y^{2}=a^{2}$.
46. Find the general solution of the differential equation $\frac{d y}{d x}+(\sec x) y=\tan x$
47. Derive the equation in normal form in vector form \& Cartesian form
V. Answer any one of the following:
48. a) Solve the following LPP graphically minimize $Z=200 x+500 y$ s.t.c. $x+2 y \geq 10,3 x+4 y \leq 24$, $x \geq 0, y \geq 0$.
b) Prove that $\left|\begin{array}{lll}1 & a & b c \\ 1 & b & c a \\ 1 & c & a b\end{array}\right|=(a-b)(b-c)(c-a)$
49. a) Prove that $\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x$. hence evaluate $\int_{0}^{\pi} \frac{\sin ^{3 / 2} x}{\sin ^{3 / 2} x+\cos ^{3 / 2} x} d x$.
b) Discuss the continuity of the function $f(x)=\left\{\begin{array}{ccc}2 x & \text { if } & x<0 \\ 0 & \text { if } & 0 \leq x \leq 1 \\ 4 x & \text { if } & x>1\end{array}\right.$
