JAIN COLLEGE 463/465, 18th Main Road, SS Royal, 80 Feet Road, Rajarajeshwari Nagar, Bangalore - 560 098 SUBJECT: MATHEMATICS II PUC MOCK II 2019-2020		
Timings Allowed: 3Hrs 15Mins		Total Marks: 100
I Answer ALL the following question.	PART A	1 X 10 =10
1. Define bijective function. 2. Give an example of a relation which is symmetric and transitive but not reflexive. 3. Construct 2X2 matrix $A=[a_{ij}]$ whose elements are given by $a_{ij} = \frac{i}{j}$ 4. Find the value of $\begin{vmatrix} 200 & 201 \\ 202 & 203 \end{vmatrix}$ without actual expansion. 5. If $y = \sin(5x+8)find \frac{dy}{dx}$ 6. Check the continuity of the function $f(x) = 2x + 3$ at $x = 1$ 7. Evaluate $\int Sec^2 (7 - 4x)dx$		
8. Find the sum of the vectors $\vec{a} = \hat{\imath} - 2\hat{\jmath} + \hat{k}$, $\vec{b} = -2\hat{\imath} + 4\hat{\jmath} + 5\hat{k}$ and $\vec{c} = \hat{\imath} - 6\hat{\jmath} - 7\hat{k}$ 9. Define feasible region.		
10. A fair die is rolled $E = \{1,5\}$ $F = \{1,4\}$ Find $P\left(\frac{E}{F}\right)$.		
PART-B		
II. answer any ten of the following. II. A relation R is defined on the set $A = \{1,2,3,4,5,6\}$ by $R = \{(x, y): y \text{ is divisible by } x\}$ verify whether R is symmetric and reflexive or not. 12. Prove that $\cos^{-1}(x)=\pi-\cos^{-1}x$, $x\in[-1,1]$ 13. Simplify $\tan^{-1}\left[\frac{a\cos x-b\sin x}{b\cos x+a\sin x}\right]$ if $\frac{a}{b} \tan x > -1$ 14. Find the equation of the line joining (3,1) and (9,3) using the determinant. 15. If $2x + 3y = Sinx$ then find $\frac{dy}{dx}$. 16. If $x = at^2$ $y = 2at$ find $\frac{dy}{dx}$. 17. Find the approximate change in the surface area of a cube of side x meters caused by increasing the side by 1%. 18. Find the slope of the normal to the curve $x = a\cos^3\theta$, $y = a\sin^3\theta$ at $\theta = \frac{\pi}{2}$. 19. Integrate $\frac{\cos\sqrt{x}}{\sqrt{x}}$. 20. Evaluate $\int \log x dx$. 21. If \vec{a} is a unit vector such that $(\vec{x} - \vec{a}).(\vec{x} + \vec{a}) = 8$ find $ \vec{x} $. 22. Find the order and degree of the differential equation, $x_y \frac{d^2y}{dx^2} + x(\frac{dy}{dx})^2 - y\frac{dy}{dx} = 0$. 23. Find the distance of the plane $3x - 3y + 4z - 6 = 0$ from the origin 24. An unbiased die is thrown twice. Let the event A be "odd number on the first throw ", B the event " odd number on second throw" Are A and B independent?		
III. Answer any TEN of the following questions.		3M X10 =30
25. Show that the relation R in the set of all Z defined by $R = \{(x, y): 2 \text{ divides } x - y\}$ is an equivalence relation. 26. Prove that $\sin^{-1}\frac{12}{13} + \cos^{-1}\frac{4}{5} + \tan^{-1}\frac{63}{16} = \pi$ 27. Express $\begin{bmatrix} 3 & 5\\ 1 & -1 \end{bmatrix}$ as the sum of symmetric and skew symmetric matrices. 28. Find the numbers whose sum is 24 and product is maximum. 29. $x = a(\theta + Sin\theta)and y = a(1 - Cos\theta) \text{ prove that } \frac{dy}{dx} = tan\left(\frac{\theta}{2}\right)$		

29. $x = a(\theta + Sin\theta)$ and $y = a(1 - Cos\theta)$ prove that $\frac{dy}{dx} = tan(\frac{\theta}{2})$ 30. Verify Rolle's theorem for $f(x) = x^2 + 2x - 8$, $x \in [-4,2]$.