JGi SRI BHAGAWAN MAHAVEER JAIN COLLEGE

Vishweshwarapuram, Bangalore.
Mock Question Paper 2 - January 2020

Course: II PU
Subject: Mathematics
Max. Marks: 100
Duration: 3:15hrs.

Instructions:
(i) The question paper has five parts namely A, B, C, D and E. Answer all the parts.
(ii) Use the graph sheet for the question on linear programming in PART E.

PART-A

I Answer All the questions.

1. Let ' $*$ ' be a binary operation defined on Q by $a * b=\frac{a b}{4}$. Find the identity element
2. Find the value of $\cot \left[\tan ^{-1}(x)+\cot ^{-1}(x)\right]$
3. Construct $a 2 \times 2$ matrix $A=\left[a_{i j}\right]$ whose elements are given by $a_{i j}=i / j$.
4. Give an example of a second order matrix which is both symmetric a skew-symmetric matrix.
5. Find $d y / d x$ if $y=\log \left(\cos e^{x}\right)$.
6. Find the anti-derivative of 3^{x} with respect to x.
7. For what value of λ, the vectors $\vec{a}=2 i-3 \lambda j+k$ and $\vec{b}=i-j-2 k$ are perpendicular to each other
8. If a line makes an angle $90^{\circ}, 60^{\circ}, 30^{\circ}$ with positive direction of x, y and z axis respectively. Find its direction cosines.
9. Define the term corner point in LPP.
10. If $P(A)=0.3, P($ not $B)=0.4$ and A and B independent events find $P(A$ and not $B)$

PART-B

II. Answer any TEN questions. $10 \times 2=20$
11. Define a binary operation on a set verify whether '*' defined on Z , by $a * b=a b+1$ is a binary operation or not
12. Evaluate $\sin \left[\pi / 3+\sin ^{-1}(1 / 2)\right]$
13. Show that $3 \sin ^{-1} x=\sin ^{-1}\left[3 x-4 x^{3}\right] ; x \in[\pi / 2, \pi / 2]$
14. Without expanding evaluate $\left|\begin{array}{lll}4 & a & b+c \\ 4 & b & c+a \\ 4 & c & a+b\end{array}\right|$
15. If $y+\sin y=\cos x$. find $\frac{d y}{d x}$.
16. Find $\frac{d y}{d x}$ if $x=a \sec \theta, y=b \tan \theta$
17. Find the equation of the tangent to the parabola $y^{2}=4 a x$ at $\left(a t^{2}, 2 a t\right)$
18. Evaluate $\int \frac{2-3 \sin x}{\cos ^{2} x} d x$
19. Evaluate $\int\left[\log (\log x)+\frac{1}{(\log x)^{2}}\right] d x$
20. Find the order and degree of the differential equation $\left(\frac{d y}{d x}\right)^{3}-\left(\frac{d y}{d x}\right)^{2}-y=\sin x$.
21. Find the vector equation of the line passing thro the points $(-1,0,2)$ and $(3,4,6)$
22. Find the area of parallelogram whose adjacent sides are given by $\vec{a}=3 i+j+4 k$ and $\vec{b}=i-j+k$
23. Find a vector in the direction of the vector $\vec{a}=2 i+3 j+k$ that has magnitude 7 units.
24. Two coins are tossed once. Find $P(E / F)$ where E : no tail appears F : no head appears

PART-C

III. Answer any TEN questions. $10 \times 3=30$
25. Verify whether the function $f: A \rightarrow B$ where $A=R-\{3\}$ and $B=R-\{1\}$ defined by $f(x)=\frac{x-2}{x-3}$ is one-one and onto or not. Give reason
26. Prove that $\cos ^{-1}(4 / 5)+\cos ^{-1}(12 / 13)=\cos ^{-1}(33 / 65)$
27. If A and B are symmetric matrices, prove that $(A B-B A)$ is skew symmetric
28. If $x=\sqrt{a^{\sin ^{-1}(t)}} \cdot y=\sqrt{a^{\cos ^{-1}(t)}}$ prove that $\frac{d y}{d x}=-\frac{y}{x}$
29. If $y=\sin ^{-1}\left[\frac{2^{x+1}}{1+4^{x}}\right]$ Find $d y / d x$
30. Verify mean value theorem for the function $f(x)=x^{3}-5 x^{2}-3 x$ in the interval $[1,3]$
31. Evaluate $\int \frac{(1+\log x)^{2}}{x} d x$
32. Evaluate $\int_{0}^{2}\left(x^{2}+1\right) d x$ as a limit of a sum.
33. Find the area of the region bounded by the curve $y^{2}=x$ and the line $x=1, x=4$ and the x-axis in the I quadrant
34. Form the differential equation representing the family of curve $y=m x$ where ' m ' is arbitrary constant
35. Find the area of the triangle having points $\mathrm{A}(1,1,1) \mathrm{B}(1,2,3)$ and $\mathrm{C}(2,3,1)$ as its vertices using vector method.
36. Show that the points $A(-1,4,-3), B(-3,2,+5), C(-3,8,-5)$ and $D(-3,2,1)$ are coplanar
37. Find the cartesian and vector equation of the line that passes through the points ($3,-2,-5$) and $(3,-2,6)$
38. Probability that A speaks truth is $4 / 5$. A coin is tossed ' A ' reports that a head appears. Find the probability that it is actually head.

PART-D

IV. Answer any SIX of the following.
39. Let $f: R \rightarrow R$ defined by $f(x)=4 x+3$. Show that ' f ' is invertible. Find the inverse of f .
40. If $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 3 & -2 & 1 \\ 4 & 2 & 1\end{array}\right]$ verity $A^{3}-23 A-40 I=0$
41. Solve by matrix method
$x+y+z=6$
$x-2 y+3 z=6$
$x-y+z=2$
42. If $y=\sin ^{-1} x$ prove that $\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}=0$
43. Sand is pouring from a pipe at the rate of $12 \mathrm{~cm}^{3} / \mathrm{sec}$. The falling sand from a cone on the ground in such a way that the height of the cone is always $1 / 6^{\text {th }}$ of the radius of the base. How fast is the height of the sand cone is increasing when the height is 4 cms .
44. Find the integral of $\frac{1}{\sqrt{a^{2}-x^{2}}}$ with respect to x and hence evaluate $\int \frac{d x}{\sqrt{7-6 x-x^{2}}}$
45. Find the area of the region bounded by the parabola $y=x^{2}$ and $y^{2}=x$
46. Find the particular solution of the differential equation $\left(1+x^{2}\right) \frac{d y}{d x}+2 x \cdot y=\frac{1}{\left(1+x^{2}\right)}$ Given $x=1, y=0$
47. Derive the equation of the line in space passing thro a point and parallel to a given vector \vec{b} both in vector and Cartesian form
48. A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is $1 / 100$ what is the probability that he will win a prize.
(i) atleast once
(ii) exactly one
(iii) atleast twice

PART-E

V. Answer any ONE of the following
49. (a) Prove that $\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x$ hence evaluate $\int_{-1}^{2}\left|x^{3}-x\right| d x$
(b) Prove that $\left|\begin{array}{ccc}b+c & a & a \\ b & c+a & b \\ c & c & a+b\end{array}\right|=4 a b c$
50. (a) A manufacturing company makes two models A and B of a product. Each piece of model A requires 9 labour hour for fabrication and 1 labour hour for finishing. Each piece of model B requires 12 labour hour for fabricating and 3 labour hour for finishing. For fabricating \& finishing the maximum labour hour available are 180 and 30 respectively. The company makes a profit of Rs. 8000 on each piece of model A and Rs.12,000 on each piece of model B. How many pieces of model A and model B should be manufactured per week to realize a maximum profits what is the maximum profit per week?
(b) Find the values of ' a ' and ' b ' such that the function
defined by $f(x)=\left\{\begin{array}{ccc}5 & \text { if } & x \leq 2 \\ a x+b & \text { if } & 2<x<10 \\ 21 & \text { if } & x \geq 10\end{array}\right.$ is a continuous function.

