JGi SRI BHAGAWAN MAHAVEER JAIN COLLEGE
Vishweshwarapuram, Bangalore.
Mock-1 Examination - January 2020

Course: II PUC
Subject: Mathematics
Max. Marks: 100
Duration: 3:15

Instructions:

1 The questions paper has FIVE parts namely A, B, C, D and E.
 2 Use Graph sheet for LPP problem in Part-E

PART-A
I Answer ALL the questions
1 Give an example of a relation which is symmetric only.
2 Write the range of $f(x)=\sin ^{-1} x$ in $[0,2 \pi]$.
3 If A is a square matrix of order 3 and $|\mathrm{A}|=4$. Find the value of $|2 \mathrm{~A}|$
4 Define a scalar matrix.
5 Find the derivative of $\sin \left(x^{2}+1\right)$.
6 Evaluate $\int \tan ^{2}(2 x) d x$.
7 Define collinear vector.
8 Find the direction cosines of a vector $i+2 j+3 k$. .
9 Define the term "constraints" in LPP.
10 If A and B are independent events with $\mathrm{P}(\mathrm{A})=0.3, \mathrm{P}(\mathrm{B})=0.4$. Find the $\mathrm{P}(\mathrm{A} \cap \mathrm{B})$

PART-B

II Answer any TEN questions:
$10 \times 2=20$
11 Find gof and fog if $f: R \rightarrow R$ and $g: R \rightarrow R$ defined, by $f(x)=\cos x$ and $g(x)=3 x^{2}$.
12 Write in the simplest form $\tan ^{-1}\left[\sqrt{\frac{1-\cos x}{1+\cos x}}\right]$.
13 Prove that $\sin ^{-1}(x)+\cos ^{-1}(x)=\frac{\pi}{2} ; x \in[-1,1]$.
14 Prove that the value of a determinant remains unchanged if its rows or columns are interchanged by considering a $3^{\text {rd }}$ order determinant.

15 Find $\frac{d y}{d x}$ if $\sin ^{2} \mathrm{x}+\cos ^{2} \mathrm{y}=\mathrm{k}$ with ' k ' is a constant.
16 Differentiate $\left(x+\frac{1}{x}\right)^{x}$ with respect to x .
17 Find the slope of the tangent to the curve $\mathrm{y}=\mathrm{x}^{2}-3 \mathrm{x}+2$ at the point whose $\mathrm{x}-$ constant is 3 .

18 Evaluate $\int \frac{\cos 2 x-\cos 2 \alpha}{\cos x-\cos \alpha} d x$.
19 Evaluate $\int \frac{e^{2 x}-1}{e^{2 x}+1} d x$.
20 Find the order and degree of the differential equation $\left(\frac{d^{2} y}{d x^{2}}\right)^{3}+\left(\frac{d y}{d x}\right)^{2}+\operatorname{Sin}\left(\frac{d y}{d x}\right)=1$.
21 If $\vec{a}=5 i-j-3 k$ and $\vec{b}=i+3 j-5 k$. Show that $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$ are perpendicular to each other.
22 Find $|\vec{x}|$, if for the unit vector $\vec{a},(\vec{x}-\vec{a}) \cdot(\vec{x}+\vec{a})=12$.
23 Find the equation of the plane through the intersection of the planes $3 x-y+2 z-4=0$ and $x+y+z-2=0$ and the point $(2,2,1)$.

24 If the probability distribution of X is

X	0	1	2	3	4
$\mathrm{P}(\mathrm{x})$	0.1	k	2 k	2 k	k

Find the value of k

PART-C

III Answer any TEN questions:
25 Show that the relation R in the set of integers given by $R=\{(a, b): 5$ divides $a-b\}$ is an equivalence relation.

26 Find the value of $\tan \frac{1}{2}\left[\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)+\cos ^{-1}\left(\frac{1-y^{2}}{1+y^{2}}\right)\right]$.
27 Express the matrix $A=\left[\begin{array}{cc}3 & 5 \\ -1 & -1\end{array}\right]$ as a sum of symmetric and skew-symmetric matrix.
28 Find $\frac{d y}{d x}$ if $x=\mathrm{a}[\operatorname{Cos} \theta+\theta \operatorname{Sin} \theta] ; \mathrm{y}=\mathrm{a}[\operatorname{Sin} \theta-\theta \operatorname{Cos} \theta]$.
29 Find the absolute maximum and absolute minimum value of the function $h(x)=\sin x+\cos ; x \in[0, \pi]$.
30 Find the interval in which the function f is given by $f(x)=2 x^{3}-3 x^{2}-36 x+7$ is strictly increasing.
31 Evaluate : $\int \operatorname{Sin}\left(\frac{2 \tan ^{-1} x}{1+x^{2}}\right) \mathrm{dx}$.
32 Evaluate : $\int_{0}^{2}\left(x^{2}+1\right) d x$ as a limit of a sum.
33 Find the area of the region bounded by the curve $\mathrm{y}^{2}=\mathrm{x}$ and the line $\mathrm{x}=1, \mathrm{x}=4$ and the $\mathrm{x}-$ axis in the first quadrant.

34 Form the differential equation reprecenting the family of curve $y=a \sin (x+b)$ where ' a ' and ' b ' arbitary constants.

35 Prove that $[\vec{a}+\vec{b}, \vec{b}+\vec{c}, \vec{c}+\vec{a}]=2[\vec{a}, \vec{b}, \vec{c}]$.
36 Find the area of the triangle having vertices $\mathrm{A}(1,1,2) \mathrm{B}(2,3,5)$ and $\mathrm{C}(1,5,5)$ by vector method.
37 Find the distance of a point $(2,5,-7)$ from the plane $\vec{r} .(i-2 j-2 k)=9$.
38 Two cards are drawn successively with replacement from a well shuffled deck of 52 cards. Find the probability distribution of the number of aces.

PART-D

IV Answer any SIX of the following:
39 Prove that the function $f: N \rightarrow Y$ defined by $f(x)=x^{2}$ where $Y=\left\{y: y=x^{2}, x \in N\right\}$ is invertible. Also find the inverse of $f(x)$.

40 If $\mathrm{A}=\left[\begin{array}{ccc}1 & 2 & -3 \\ 5 & 0 & 2 \\ 1 & -1 & 1\end{array}\right], \mathrm{B}=\left[\begin{array}{ccc}3 & -1 & 2 \\ 4 & 2 & 5 \\ 2 & 0 & 3\end{array}\right], \mathrm{C}=\left[\begin{array}{ccc}4 & 1 & 2 \\ 0 & 3 & 2 \\ 1 & -2 & 3\end{array}\right]$ compute (i) $\mathrm{A}+\mathrm{B}$, (ii) $\mathrm{B}-\mathrm{C}$ also verify that $A+(B-C)=(A+B)-C$.

41 Solve by Matrix method

$$
\begin{aligned}
& x+y+z=10 \\
& x-y-z=-2 \\
& 2 x+3 y+4 z=4
\end{aligned}
$$

42 If $\mathrm{e}^{\mathrm{y}}(\mathrm{x}+1)=1$ prove that $\frac{d^{2} y}{d x^{2}}=\left(\frac{d y}{d x}\right)^{2}$.
43 A man of height 2 meters walk at a uniform speed of $5 \mathrm{~km} / \mathrm{hr}$ away from a lamp post which is 6 mts high. Find the rate at which the length of his shadow is increasing.

44 Find the integral of $\frac{1}{x^{2}-a^{2}}$ with respect to x, and hence evaluate $\int \frac{d x}{3 x^{2}+13 x-10}$.
45 Find the area of the region bounded by the parabola $y^{2}=4 x$ and the line $y=2 x$.
46 Find the particular solution of the differential equation $\frac{d y}{d x}+\cot x \cdot y=4 x \operatorname{cosec} x$. Given that $y=0$, when $\mathrm{x}=1$.

47 Derive the formula to find the shortest distance between the two skew-lines $\vec{r}=a_{1}+\lambda b_{1}, \vec{r}=a_{2}+\mu \vec{b}_{2}$. in the vector form.

48 Five cards are drawn successively with replacement from a well shuffled deck of 52 cards. What is the probability that (i) All 5 cards are spades, (ii) Only 3 cards are spades, (iii) none of them is spade?

PART-E

V Answer any ONE questions:

$10 \times 1=10$
49 a) Prove that $\int_{a}^{b} f(x) \mathrm{dx}=\int_{a}^{b} f(a+b-x) d x$ and hence evaluate $\int_{\pi / 6}^{\pi / 3} \frac{1}{1+\sqrt{\tan x}} d x$.
b) Prove that $\left|\begin{array}{ccc}a^{2}+1 & a b & a c \\ a b & b^{2}+1 & b c \\ c a & c b & c+1\end{array}\right|=1+a^{2}+b^{2}+c^{2}$.

50 a) Minimze and maximize $Z=x+2 y$ subject to the constraints $x+2 y \geq 100,2 x-y \leq 0,2 x+y \leq 200$ and $\mathrm{x}, \mathrm{y} \geq 0$ by Graphical method.
b) Determine the value of k if $f(x)=\left\{\begin{array}{ll}\frac{k \cos x}{\pi-x} & \text { if } x \neq \pi / 2 \text { is continous at } x=\pi / 2 \\ 3 & \text { if } x=\pi / 2\end{array}\right.$.

