Course: I PUC
Subject: Mathematics
Max. Marks: 100
Duration: 3:15

Instructions:

1. The question paper has five parts namely A, B, C, D and E. Answer all the parts.
2. Use the graph sheet for the question on linear inequalities in Part-D.

PART-A

I Answer ALL the questions:
1 If $A=\{1,2\}, B=\{3,4\}$ and $C=\{5,6\}$ find $(A-B) \times C$.
2 Find the range of the function $f(x)=\sqrt{9-x^{2}}$, where $x \in R$.
3 Express $\frac{5 \pi}{3}$ in degree measure.
4 Find the modules of $\frac{1+i}{1-i}$.
5 Solve $7 x+3<5 x+9, x \in N$.
6 Find ' n ' if ${ }^{n} C_{7}={ }^{n} C_{6}$.
7 Find the $10^{\text {th }}$ term of $5,25,125, \ldots$.
8 Write the negation of "Every natural number is greater than zero."
9 Name the plane in which the point $(-3,0,4)$ lies.
10 Two series A and B with equal means have standard 9 and 10 respectively. Which series is more consistent?

PART-B

II Answer any TEN questions:
11 If $U=\{1,2,3,4,5,6,7,8,9\}, A=\{2,4,6,8\}$ and $B=\{2,3,5,7\}$. Verify that $(A \cup B)^{1}=A^{1} \cap B^{1}$.
12 Let $A=\{1,2,3 \ldots \ldots \ldots .14\}$. Define a relation R from A to A, by $R=\{(x, y): 3 x-y=0$, where $\mathrm{x}, \mathrm{y} \in \mathrm{A}\}$ write down its domain and range.

13 Let $\mathrm{A}=\{1,2\}$ and $\mathrm{B}=\{3,4\}$. Write $\mathrm{A} \times \mathrm{B}$. How many subsets will $\mathrm{A} \times \mathrm{B}$ have?
14 Find the value of $\operatorname{Cos} 15^{\circ}$.
15 Find the general solution of $\operatorname{Sin} 2 \mathrm{x}+\operatorname{Cos} \mathrm{x}=0$.
16 Express $\left(\frac{1}{3}+3 i\right)^{3}$ in the form $\mathrm{a}+\mathrm{ib}$.
17 Find the point on the x-axis, which is equidistant from the points $(7,6)$ and $(3,4)$.
18 Find the equation of ellipse, whose ends of major axis $(\pm 3,0)$ ends of minor axis $(0, \pm 2)$
19 Show that the points $(-4,6,10),(2,6,6)$ and $(14,0,-2)$ are collinear.

20 Evaluate $\lim _{x \rightarrow 1}\left(\frac{x^{15}-1}{x^{10}-1}\right)$.
21 Write cotrapositive and consense of the statement "If a number n is even than n^{2} is even."
22 Find the sum to n terms of the A.P., whose $\mathrm{k}^{\text {th }}$ term is $5 \mathrm{k}+1$.
23 How many words, with or without meaning can be formed using all the letters of the word EQUATION, using each letter exactly once?

24 Given $\mathrm{P}(\mathrm{A})=\frac{3}{5}$, and $\mathrm{P}(\mathrm{B})=\frac{1}{5}$. Find the $\mathrm{P}(\mathrm{A}$ or B$)$, if A and B are mutually exclusive events.

PART-C

III Answer any TEN questions:
25 In a group of 65 people, 40 like cricket, 10 like both cricket and tennis. How many like tennis only and not cricket? How many like tennis?

26 Let $f=\{(1,1),(2,3),(0,-1),(-1,-3)\}$ be a function from Z to Z defined by $f(x)=a x+b$, for some integers a, b. Determine a and b .

27 Prove that $\operatorname{Sin} 3 x=3 \operatorname{Sin} x-4 \operatorname{Sin}^{3} x$.
28 Convert the complex number $\frac{-16}{1+i \sqrt{3}}$ into polar form.
29 Determine n if, ${ }^{2 \mathrm{n}} \mathrm{C}_{3}:{ }^{\mathrm{n}} \mathrm{C}_{3}=12: 1$.
30 Find the term independent of x in the expansion of $\left(\frac{3}{2} x^{2}-\frac{1}{3 x}\right)^{6}$.
31 Find the focus, directrix, and length of the latus rectum of the parabola $x^{2}=-16 y$.
32 Evaluate $\lim _{x \rightarrow \frac{\pi}{2}}\left(\frac{\tan 2 x}{x-\frac{\pi}{2}}\right)$.
33 Find the derivative of Cosx w.r.t. x from the first principles.
34 The sum of first three terms of a GP is $\frac{39}{10}$ and their product is 1 . Find the common ratio and the terms.
35 Verify by the method of contradition that: " $\sqrt{2}$ is an irrational number."
36 Find the angle between the lines $y-\sqrt{3} x-5=0$ and $\sqrt{3} y-x+6=0$.
37 In how many ways can the letters of the word PERMUTATIONS be arranged if the
(i) words start with P and end with S
(ii) vowels are all together.
(iii) there are always 4 letters between P and S ?

38 Find the probability that when a hand of 7 cards is drawn from a well shuffled deck of 52 cards, it contains (i) all kings (ii) 3 kings (iii) atleast 3 kings.

PART-D

IV Answer any SIX of the following:

39 Define greatest integer function. Draw its graph write its domain and range.
40 Prove that $\operatorname{Cos}^{2} x+\operatorname{Cos}^{2}\left(x+\frac{\pi}{3}\right)+\operatorname{Cos}^{2}\left(x-\frac{\pi}{3}\right)=\frac{3}{2}$.
41 Using principle of mathematical induction that, $1^{2}+2^{2}+3^{2}+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$.
42 Solve the system of inequalities graphically: $3 x+2 y \leq 150, \quad x+4 y \leq 80, \quad x \geq 0, \quad y \geq 0$
43 For all reals a , b and positive integer n , prove that, $(\mathrm{a}+\mathrm{b})^{\mathrm{n}}={ }^{\mathrm{n}} \mathrm{C}_{0} \mathrm{a}^{\mathrm{n}}+{ }^{\mathrm{n}} \mathrm{C}_{1} \mathrm{a}^{\mathrm{n}-1} \mathrm{~b}+{ }^{\mathrm{n}} \mathrm{C}_{2} \mathrm{a}^{\mathrm{n}-2} \mathrm{~b}^{2}+--\cdots--+{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}} \mathrm{b}^{\mathrm{n}}$
44 Derive an expression for the co-ordinates of a point that divides the line joining the points $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ and $B\left(x_{2}, y_{2}, z_{2}\right)$ internally in the ratio m:n. Hence find the co-ordinates of the midpoint of $A B$ whose $A=(1,2,3)$ and $B=(5,6,7)$.

45 Derive angle between two lines with slopes m_{1} and m_{2} and θ is the angle between two lines is of the form $\theta=\tan ^{-1}\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|$.

46 For any positive integer n, prove that $\lim _{x \rightarrow a}\left(\frac{x^{n}-a^{n}}{x-a}\right)=n a^{n-1}$.
47 A group consist of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has (i) no girl, (ii) at least one boy and one girl (iii) at least 3 girls?

48 Find the mean devation about mean for the following data.

Marks obtained	$\mathbf{1 0 - 2 0}$	$\mathbf{2 0 - 3 0}$	$\mathbf{3 0 - 4 0}$	$\mathbf{4 0 - 5 0}$	$\mathbf{5 0 - 6 0}$	$\mathbf{6 0 - 7 0}$	$\mathbf{7 0 - 8 0}$
Number of students	2	3	8	14	8	3	2

PART-E

V Answer any ONE of the following

49 a) Prove geomtrically that: $\operatorname{Cos}(x+y)=\operatorname{Cosx} \operatorname{Cosy}-\operatorname{Sin} x$ Siny. Hence deduce that $\operatorname{Cos}\left(\frac{\pi}{2}+x\right)=-\operatorname{Sin} x$.
b) Find the sum to n terms of the series: $5+14+19+29+41+\ldots \ldots .$.

50 a) Define Hyperbola. Derive its equation in the form $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$.
b) Find the derivative of $\frac{x^{2} \operatorname{Cos}\left(\frac{\pi}{4}\right)}{\operatorname{Sin} x}$ w.r.t x.

