G		Course:	I PUC
	Vishweshwarapuram, Bangalore,	Subject:	Mathematics
	Mock Examination – January 2020	Max. Marks:	100
		Duration:	3:15

Instructions:

J

- 1. The question paper has five parts namely A, B, C, D and E. Answer all the parts.
- 2. Use the graph sheet for the question on linear inequalities in Part-D.

PART-A

I Answer ALL the questions:

- 1 If $A = \{1, 2\}$, $B = \{3, 4\}$ and $C = \{5, 6\}$ find (A-B) x C.
- 2 Find the range of the function $f(x) = \sqrt{9 x^2}$, where $x \in \mathbb{R}$.
- 3 Express $\frac{5\pi}{3}$ in degree measure.
- 4 Find the modules of $\frac{1+i}{1-i}$.
- 5 Solve $7x + 3 < 5x + 9, x \in N$.
- 6 Find 'n' if ${}^{n}C_{7} = {}^{n}C_{6}$.
- 7 Find the 10th term of 5, 25, 125,
- 8 Write the negation of "Every natural number is greater than zero."
- 9 Name the plane in which the point (-3, 0, 4) lies.
- 10 Two series A and B with equal means have standard 9 and 10 respectively. Which series is more consistent?

PART-B

II Answer any TEN questions:

- 11 If U = {1, 2, 3, 4, 5, 6, 7, 8, 9}, A = {2, 4, 6, 8} and B = {2, 3, 5, 7}. Verify that $(A \cup B)^1 = A^1 \cap B^1$.
- 12 Let $A = \{1, 2, 3, \dots, 14\}$. Define a relation R from A to A, by $R = \{(x, y) : 3x y = 0, where x, y \in A\}$ write down its domain and range.
- 13 Let $A = \{1, 2\}$ and $B = \{3, 4\}$. Write A x B. How many subsets will A x B have?
- 14 Find the value of $\cos 15^{\circ}$.
- 15 Find the general solution of Sin2x + Cosx = 0.
- 16 Express $\left(\frac{1}{3}+3i\right)^3$ in the form a + ib.
- 17 Find the point on the x-axis, which is equidistant from the points (7, 6) and (3, 4).
- 18 Find the equation of ellipse, whose ends of major axis $(\pm 3,0)$ ends of minor axis $(0, \pm 2)$
- 19 Show that the points (-4, 6, 10), (2, 6, 6) and (14, 0, -2) are collinear.

 $10 \ge 2 = 20$

 $10 \ge 1 = 10$

- 20 Evaluate $\lim_{x \to 1} \left(\frac{x^{15} 1}{x^{10} 1} \right).$
- 21 Write cotrapositive and consense of the statement "If a number n is even than n^2 is even."
- 22 Find the sum to n terms of the A.P., whose k^{th} term is 5k+1.
- 23 How many words, with or without meaning can be formed using all the letters of the word EQUATION, using each letter exactly once?

24 Given $P(A) = \frac{3}{5}$, and $P(B) = \frac{1}{5}$. Find the P(A or B), if A and B are mutually exclusive events.

PART-C

III Answer any TEN questions:

- 25 In a group of 65 people, 40 like cricket, 10 like both cricket and tennis. How many like tennis only and not cricket? How many like tennis?
- 26 Let $f = \{(1,1), (2, 3), (0, -1), (-1, -3)\}$ be a function from Z to Z defined by f(x) = ax + b, for some integers a, b. Determine a and b.
- 27 Prove that $\sin 3x = 3\sin x 4\sin^3 x$.
- 28 Convert the complex number $\frac{-16}{1+i\sqrt{3}}$ into polar form.
- 29 Determine n if, ${}^{2n}C_3 : {}^{n}C_3 = 12:1$.

30 Find the term independent of x in the expansion of $\left(\frac{3}{2}x^2 - \frac{1}{3x}\right)^6$.

31 Find the focus, directrix, and length of the latus rectum of the parabola $x^2 = -16y$.

32 Evaluate $\lim_{x \to \frac{\pi}{2}} \left(\frac{\tan 2x}{x - \frac{\pi}{2}} \right).$

33 Find the derivative of Cosx w.r.t. x from the first principles.

34 The sum of first three terms of a GP is $\frac{39}{10}$ and their product is 1. Find the common ratio and the terms.

- 35 Verify by the method of contradition that: " $\sqrt{2}$ is an irrational number."
- 36 Find the angle between the lines $y \sqrt{3}x 5 = 0$ and $\sqrt{3}y x + 6 = 0$.
- 37 In how many ways can the letters of the word PERMUTATIONS be arranged if the
 - (i) words start with P and end with S
 - (ii) vowels are all together.
 - (iii) there are always 4 letters between P and S?
- 38 Find the probability that when a hand of 7 cards is drawn from a well shuffled deck of 52 cards, it contains (i) all kings (ii) 3 kings (iii) atleast 3 kings.

PART-D

IV Answer any SIX of the following:

- 39 Define greatest integer function. Draw its graph write its domain and range.
- Prove that $\cos^2 x + \cos^2 \left(x + \frac{\pi}{3} \right) + \cos^2 \left(x \frac{\pi}{3} \right) = \frac{3}{2}$. 40
- Using principle of mathematical induction that, $1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$. 41
- Solve the system of inequalities graphically : $3x+2y \le 150$, $x+4y \le 80$, $x \ge 0$, $y \ge 0$ 42
- For all reals a, b and positive integer n, prove that, $(a+b)^n = {}^nC_0a^n + {}^nC_1a^{n-1}b + {}^nC_2a^{n-2}b^2 + \dots + {}^nC_nb^n$ 43
- Derive an expression for the co-ordinates of a point that divides the line joining the points A (x_1, y_1, z_1) 44 and B (x₂, y₂, z₂) internally in the ratio m:n. Hence find the co-ordinates of the midpoint of AB whose A = (1, 2, 3) and B = (5, 6, 7).
- Derive angle between two lines with slopes m_1 and m_2 and θ is the angle between two lines is of the form 45

$$\theta = \tan^{-1} \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|.$$

- 46 For any positive integer n, prove that $\lim_{x \to a} \left(\frac{x^n a^n}{x a} \right) = na^{n-1}.$
- 47 A group consist of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has (i) no girl, (ii) at least one boy and one girl (iii) at least 3 girls?
- 48 Find the mean devation about mean for the following data.

Marks obtained	10-20	20-30	30-40	40-50	50-60	60-70	70-80		
Number of students	2	3	8	14	8	3	2		

Answer any ONE of the following V

49 a) Prove geometrically that: $\cos(x+y) = \cos x \cos y - \sin x \sin y$. Hence deduce that

$$\cos\left(\frac{\pi}{2} + x\right) = -\sin x.$$

b) Find the sum to n terms of the series: $5 + 14 + 19 + 29 + 41 + \dots$

50 a) Define Hyperbola. Derive its equation in the form $\frac{x^2}{z^2} - \frac{y^2}{L^2} = 1$. 6

b) Find the derivative of
$$\frac{x^2 \cos\left(\frac{\pi}{4}\right)}{\sin x}$$
 w.r.t x. 4

$$6 \ge 5 = 30$$

4