SECOND YEAR HIGHER SECONDARY SECOND TERMINAL EXAM DEC 2019 - PHYSICS ANSWER KEY
(Prepared by AYYAPPAN C, HSST ,GMRHSS Kasaragod)

Qn	Value points	Score
1	Aluminium	1
2	Induced emf	1
3	polarization	1
4	$\mathrm{F}=\mathrm{R} / 2=10 \mathrm{~cm}$	1
5	Quantum theory	1
6	$B \times 2 \pi r=\mu_{0} I, B=\frac{\mu_{0} I}{2 \pi r}$	2
7	a) Deflection produced per unit voltage b) Increase in number of turns increases resistance. Thus voltage sensitivity remains constant.	1 1
8	a) $\mathrm{I}_{\mathrm{rms}}=\mathrm{i}_{\mathrm{m}} / \mathrm{V} 2, \mathrm{~V}_{\mathrm{rms}}=\mathrm{v}_{\mathrm{m}} / \mathrm{V} 2$ b) $\mathrm{v}_{\mathrm{m}}=230 \mathrm{~V}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
9	Moves perpendicular to electric and magnetic field, shows transverse wave nature, no material medium required, not deflected in electric and magnetic field	2
10		2
11	$\lambda=\frac{h}{p}=\frac{h}{m v} \quad=2.608 \times 10^{-34} \mathrm{~m}$	2
12	$\begin{aligned} & \mathrm{m}=\mathrm{fo} / \mathrm{fe}=100 \\ & \text { tube length }=\mathrm{fo}+\mathrm{fe}=101 \mathrm{~cm} \end{aligned}$	2
13	$\begin{aligned} & \sin i=\frac{\mathrm{BC}}{\mathrm{AC}}=\frac{v_{1} \tau}{\mathrm{AC}} \\ & \boldsymbol{n}_{\mathbf{1}} \sin \boldsymbol{\operatorname { s i n }} \boldsymbol{i}=\boldsymbol{n}_{\mathbf{2}} \sin r=\frac{\mathrm{AE}}{\mathrm{AC}}=\frac{v_{2} \tau}{\mathrm{AC}} \end{aligned}$	2
14	Micro wave : radar system , microwave oven X - ray: To study structure of atoms, detect hidden materials	
15	a) $\phi=\frac{q}{\varepsilon_{0}}$ b)	1
16	 working	3
17	a)Zero	1

\begin{tabular}{|c|c|c|}
\hline \& b) Derivation of \(P / Q=R / S\) \& 2 \\
\hline 18 \& a)Current due to time varying electric field
\[
\begin{aligned}
\& \text { b) } \lambda=2 \pi / k=0.01256 \mathrm{~m} \\
\& \mathrm{f}=\mathrm{w} / 2 \pi=0.238 \times 10^{11} \mathrm{~Hz}
\end{aligned}
\] \& \[
\begin{aligned}
\& 1 \\
\& 1 \\
\& 1
\end{aligned}
\] \\
\hline 19 \& explanation
\[
r=\frac{R\left(l_{1}-l_{2}\right)}{l_{2}}
\] \& 3 \\
\hline 20 \& \begin{tabular}{l}
a)statement of laws of refraction \\
b) \(n=c / v=1.5\)
\end{tabular} \& \[
2
\]
\[
1
\] \\
\hline 21 \& \begin{tabular}{l}
a)ability resolve two very close neighboring objects \\
b)resolving power is inversely proportional to the limit of resolution \\
c) to get larger resolving power
\end{tabular} \& 1

1 \\

\hline 22 \& | a)derivation of $B=\frac{\mu_{0}}{4 \pi} \frac{2 m}{r^{3}}$ |
| :--- |
| b) $\vec{E}=\frac{1}{4 \pi \varepsilon_{0}}\left[\frac{2 p}{r^{3}}\right] \hat{p}$ | \& 3

1 \\

\hline 23 \& | a)LCR Resonace |
| :--- |
| b) derivation of $f=1 /(2 \pi V L C)$ |
| c) calculation of f | \& \[

$$
\begin{aligned}
& 1 \\
& 2
\end{aligned}
$$
\]

$$
1
$$ \\

\hline 24 \& Ray diagram of prism, derivation \& 4 \\

\hline 25 \& | a)sources must be coherent |
| :--- |
| b) |
| c)derivation of fringe width | \& | 1 |
| :--- |
| 1 |
| 2 | \\

\hline 26 \& | a)anticlockwise |
| :--- |
| b)derivation of $\mathrm{E}=1 / 2\left(\mathrm{Li}^{2}\right)$ |
| c) calculation $\mathrm{E}=200 \times 10^{-3} \mathrm{~J}$ | \& \[

1
\]

$$
\begin{aligned}
& 2 \\
& 2
\end{aligned}
$$ \\

\hline 27 \& | a)LCR phasor diagram and derivation |
| :--- |
| b)calculation | \& \[

3
\]

$$
2
$$ \\

\hline 28 \& | a)Derivation of curved surface formula |
| :--- |
| b)derivation- lens makers formula | \& | 3 |
| :--- |
| 2 | \\

\hline 29 \& | $\tan i_{B}=\mu$ |
| :--- |
| a) |
| b) proof |
| c) $\theta=\tan ^{-1} 1.5$, calculation | \& 1

3
3 \\
\hline
\end{tabular}

