Time: 2 20 - 6750493961 .	Standard X	Reg.No.:
IR UNELVE COMMON HALF A.B.ALAIAH Time: 2.30 hours. 9750493961,	MATHEMATICS	Marks: 1
Instructions : i) Check the que	stion paper for fairne	ss of printing. If there is any la
	Sin ure nan Supervisa	or immediately
II) Use Diue or bi	ack ink to write and pe	encil to draw diagrams
Note : This question paper	contains four parts.	
interest of these is	Part - I	
· · · · · · · · · · · · · · · · · · ·		14 x 1 =
") Choose the cor	rect answer from th	e four alternatives and wr
1. The range of the relation R -	and the correspond	ling answer
 The range of the relation R = a) {2,3,5,7} 		
c) {4,9,25,49,121}	b) {2,3,5,7 d) {1,4,9,2	
그 같은 것 같이 많이		
2. If $f(x) = 2x^2$ and $g(x) = \frac{1}{3x}$, the	en tog is	. The height of a contraction of the
a) $\frac{3}{2x^2}$ b) $\frac{2}{3x^2}$	c) $\frac{2}{2}$	$d) \frac{1}{2}$
3. If the HCF of 65 and 117 is exp		
a) 4 b) 2	the second se	d) 3
4. If the sequence t_1, t_2, t_3, \dots		-, -
a) a geometric progression		0 12 18
b) an arithmetic progression		001 101 101
c) neither an arithmetic prog	gression nor a geometr	ric progression
d) a constant sequence	A next past a past in	piace of the page numbers
5. $\frac{x}{x^2-25} - \frac{8}{x^2+6x+5}$ gives		
	1. hs 2.	7~ 40
a) $\frac{x^2 - 7x + 40}{(x^2 - 25)(x+1)}$	b) $\frac{x+1}{(x-5)(x)}$	(+5) (x+1)
the and and an it is the second and a second		
c) $\frac{1}{(x^2 - 25)(x+1)}$	d) $(x^2 - 25)$	<u>10</u>) (x+1)
	3] [5 7]	a and o pre wa pooline en
	7 = 0.5	to an us frent tool work?
6. Find the matrix X if $2X + 5$	1 [9 2] .	
6. Find the matrix X if $2X + \begin{bmatrix} 1 \\ 5 \end{bmatrix}$	/] [9 5] . [2 2	12.1 for the monitorial a
6. Find the matrix X if $2X + \begin{bmatrix} 5 \\ 5 \end{bmatrix}$ a) $\begin{bmatrix} -2 & -2 \\ 2 & -1 \end{bmatrix}$	7] [9 5] b) [2 2 2 -	
6. Find the matrix X if $2X + \begin{bmatrix} 5 \\ 5 \end{bmatrix}$ a) $\begin{bmatrix} -2 & -2 \\ 2 & -1 \end{bmatrix}$ c) $\begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix}$	7 $\begin{bmatrix} 9 & 5 \end{bmatrix}$ b) $\begin{bmatrix} 2 & 2 \\ 2 & -1 \end{bmatrix}$ d) $\begin{bmatrix} 2 & 1 \\ 2 & 2 \end{bmatrix}$	

16

C

12.3.5

- 7. In the given figure, the value of x is
 - b) 8 a) 2 d) 12
 - c) 4
- 8. The area of triangle formed by the points (-5,0), (0,-5) and (5,0) is
 - b) 25 sq.units 5 sq.units a) 0 sq.units d) none of these
- 9. (2,1) is the point of intersection of two lines

EXAMINATION - 2019

visits/or intervision

or been ink to write and properly to draw dragrams

- a) x-y-3=0; 3x-y-7=0' b) x+y=3; 3x+y=7
- d) x + 3y 3 = 0; x y 7 = 0c) 3x + y = 3; x + y = 7
- 10. cos60° sin30° + cos30° sin60° =
 - b) $\frac{1}{2}$ b) $\frac{\sqrt{3}}{2}$ (1d) 14 8 25 41 (b1) a) 90°
- 11. The height of a right circular cone whose radius is 3 cm and slant height is 5 cm will be
 - d) 5°cm c) 13 cm b) 4 cm a) 12 cm

12. The total surface area of a hemisphere is how much times the square of its radius?

- d) 2π c) 3π b) 4π a) π
- 13. The standard deviation of a data is 5. If each value is multiplied by 2, then the new variance is d) 225
 - c) 10 b) 100 a) 3
- 14. A page is selected at random from a book. The probability that the digit at units place of the page number chosen is less than 7 is
 - d) 7/ c) 3/9 b) 1/10 a) $\frac{3}{10}$

Part - II

Note. Answer any ten Questions.Question Number 28 is Compulsory.10 x 2 = 20

- 15. Let A = $\{1,2,3,4\}$ and B = N. Let f:A \rightarrow B be defined by $f(x) = x^3$ then,
 - i) Find the range of f. ii) Identify the type of function.
- 16. a and b are two positive integers such that $a^b \times b^a = 800$. Find 'a' and 'b'.
- 17. Show that the sequence described by $a_n = \frac{1}{3}n + \frac{1}{6}$ is an A.P.
- 18. Find the sum of 1 + 3 + 5 + + 55
- 19. If α and β are the roots of $x^2 + 6x 4 = 0$, find the value of $(\alpha \beta)^2$.

X Maths

20. If
$$A = \begin{bmatrix} -\sqrt{17} & 0.7 & \frac{5}{2} \\ 8 & 3 & 1 \end{bmatrix}$$
, then verify $(A^T)^T = A^T$

2]

5 2

Sector MAX

- 21. The line through the points (-2, a) and (9,3) has slope $-\frac{1}{2}$. Find the value of a.
- 22. Find the area of the triangle formed by the points (1,-1), (-4,6) and (-3,-5)
- 23. Find the angle of elevation of the top of a tower from a point on the ground, which is 30 m away from the foot of a tower of height $10\sqrt{3}$ m.
- 24. The radius of a spherical balloon increases from 12 cm to 16 cm as air being pumped into it. Find the ratio of the surface area of the balloons in the two cases.
- 25. The volume of a solid right circular cone is 11088 cm³. If its height is 24 cm then find the radius of the cone.
- 26. An aluminium sphere of radius 15 cm is melted to make a cylinder of radius 10 cm. Find the height of the cylinder.
- 27. If the range and the smallest value of a set of data are 36.8 and 13.4 respectively, then find the largest value.
- 28. A coin is tossed twice. What is the probability of getting exactly one head?

a tangent to the circle folli-the own P having radius 2.6 cm and centre

Note: Answer any Ten Questions Question Number 42 is Compulsory10 x 5 = 50

- 29. Let $A = \{x \in N/1 \le x \le 4\}$, $B = \{x \in W/0 \le x \le 2\}$ and $C = \{x \in N/x \le 3\}$. Then verify that $A \times (B \cap C) = (A \times B) \cap (A \times C)$
- 30. Find the value of k, such that fog = gof if f(x) = 3x + 2, g(x) = 6x k.
- 31. In a Geometric Progression, the 4th term is 8 and the 8th term is $\frac{128}{625}$. Find the Geometric Progression.
- 32. Rekha has 15 square colour papers of sizes 10 cm, 11 cm, 12 cm, ..., 24 cm. How much area can be decorated with these colour papers?
- 33. Solve: x + y + z = 5; 2x y + z = 9; x 2y + 3z = 16
- 34. If $9x^4 + 12x^3 + 28x^2 + ax + b$ is a perfect square, find the values of a and b.
- 35. Two dice are rolled together. Find the probability of getting a doublet or sum of faces as 4.

36. Let
$$A = \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix}$$
, $B = \begin{bmatrix} 4 & 0 \\ 1 & 5 \end{bmatrix}$, $C = \begin{bmatrix} 2 & 0 \\ 1 & 2 \end{bmatrix}$, show that $(A - B)^{T} = A^{T} - B^{T}$.

- 37. State and prove Pythagoras theorem.
- 38. A(-3,0), B(10,-2) and C(12,3) are the vertices of △ABC. Find the equation of the altitude through A.

- X Maths
- 39. From a point on the ground, the angles of elevation of the bottom and top of a tower fixed at the top of a 30 m high building are 45° and 60° respectively. Find the height of the tower. $(\sqrt{3} = 1.732)$.
- 40. A doll is made by surmounting a cone on a hemisphere of equal radius. The radius of the hemisphere is 7 cm and slant height of the cone is 11 cm. Find the surface al nation of the doll, no think a ment review to be not entited notificities
- 41. Find the standard deviation for the following data.

X	10	15	18	20	25	nes entito olden entitan
	3					

42. If the roots of $(a - b)x^2 + (b - c)x + (c - a) = 0$ are equal, prove that 2a = b + c.

CREATE PRODUCTION

A the Prograss M

30 9,511

 $2 \times 8 = 16$

Note : Answer All the Questions.

A Mathe

beamua

s 10 cav

43. a) Construct a triangle similar to a given triangle PQR with its sides equal to $\frac{3}{5}$ of the corresponding sides of the triangle PQR. (Scaler factor $\frac{3}{5} < 1$)

counts for a trace What is to profin (or) bits of getting exactly one head?

- b) Draw a tangent to the circle from the point P having radius 3.6 cm and centre at O. Point P is at a distance 7.2 cm from the centre.
- 44. a) Graph the quadratic equation $x^2 9x + 20 = 0$ and state its nature of solutions.

(or)

mo St. mo FT mo OT pushe to energy public are pe St. res.

a to endeviate the sector of a sector of the values of a

nur max can be dopprated with these cold in canels fil

The stands Standard Standard Standard Standard

b) Draw the graph of $y = x^2 + x - 2$ and hence solve $x^2 + x - 2 = 0$.

ve and bas is an acces.

SSLE TIRUNELVELI Common half yearly Answer buy A.BALAIAU MATHY Answer buy A.BALAIAU choose ZATUD 9750493961 oger squits 1. () [49, 25, 49, 121] 9, . 6) 2+4=3 , 32+4=7 2 4 2 9x2 1-2501 10. 17 1 3. 67 2 11. b) 4cm 9. 6) an arithmetic progression 12. 07 317 13. by 🚛 100 5r c) x2-7x +40 14. 4 7/10 (x²-25)(xH) 6. 6) [2 2] 2 -1] 7. () 4 Two marks 15. 20. $A^{T} = \begin{bmatrix} 5 & -\sqrt{17} & 8 \\ 2 & 0.7 & 3 \\ 2 & 5/2 & 1 \end{bmatrix}$ Range = 21, 8, 27, 64 3 Type: One-one function. and in to function. $(A)^{T})^{T} = \begin{bmatrix} 5 & 2 & 2 \\ -\sqrt{17} & 0.7 & 3 \end{bmatrix} = A;$ $a_{x}^{b} = Poe = 2^{5} x s^{2} or s^{2} x s^{5}$ 21. 310 - 1/2 a=50r2 6=20r5. 17. a, = 3/6 a2 = 5 a3: 7/6 a = 19 a = 17 2 a = 2 bi-ti= tj-ti . 1 21's an A.P. 22- Aven - 1/2 -1 -4 -3 1/3 = 1/2 [6+20+3-4+18+5] 18. $s_n = \left(\frac{l+1}{2}\right)^2 = \left(\frac{56}{2}\right)^2 = 784.$ = 24 sq. units. 19. a+B=-6 KB=-4. 23. tono = 1013 = 1/13 (a-B)= (a+B)2 - Hap $= f \theta^2 - 4(-4)$ 0=300 = 36 + 16 = 52.

24.
$$4\pi v_{1}^{2} : 4\pi v_{2}^{2}$$

 $e^{\frac{1}{3}} x^{2} : 4\pi v_{2}^{2}$
 $e^{\frac{1}{3}} x^{2} : 4\pi v_{2}^{2}$
 $e^{\frac{1}{3}} x^{2} : 4\pi v_{2}^{2}$
 $\frac{1}{3} \pi v^{2} h = 11088$
 $\frac{1}{3} x^{2} : x^{2} x^{2} x^{2} x^{2} 110 8t$
 $\frac{1}{2} : x^{2} : x^{2} x^{2} x^{2} 110 8t$
 $\frac{1}{2} : x^{2} : x^{2} x^{2} x^{2} x^{2} 110 8t$
 $\frac{1}{2} : x^{2} : x^{2} x^{2} x^{2} x^{2} 110 8t$
 $\frac{1}{2} : x^{2} : x^{2} x^{2} x^{2} x^{2} x^{2} 110 8t$
 $\frac{1}{2} : x^{2} : x^{2} x^{2}$

18

fog = gof 3(6x-k)+2 = 26(3x+2) - k 18x-3k+2 = 18x+12 - k -2k = 10 [2 = -5

ar 3= 8 3), $a_{1}^{7} = \frac{128}{625}$ $1 \neq 1$ $r^{4} = \frac{16}{625} = \frac{2^{4}}{54}$ i ra 2/ um cal a = 8 × 53 = 125 The G.P is 125, 50, 20 notion do 32. $10^{2} + 11^{2} + \cdots 24^{2} = (1^{2} + \cdots + 24^{2})_{-}$ 1 7 m c = 4900 - 285 4615 59 33. 2x-y+z = 9 x- 2y + 3z = 16 x=2, y=

34,

$$3 \frac{3}{9} \frac{4}{12} \frac{3}{28} \frac{4}{4} \frac{5}{12} \frac{12}{12} \frac{24}{12} \frac{12}{12} \frac{24}{12} \frac{12}{12} \frac{24}{12} \frac{12}{12} \frac{24}{12} \frac{5}{12} \frac{34}{12} \frac{5}{12} \frac{5}{12} \frac{34}{12} \frac{5}{12} \frac{5}{12} \frac{34}{12} \frac{5}{12} \frac{5}{12}$$

35.
$$A = \{(1,1), (A_{22}), (3, 3), (4, 14), (5, 5), (6, 4), 4\}.$$

 $(6, 4), 4].$
 $B = \{(1, 3), (2, 12), (3, 1), 3$
 $P(A \cup B) \ge 8$ $P(A \cup A_{2}) \ge 9, 2$
 $P(A \cup B) \ge 8$ $P(A \cup A_{2}) \ge 9, 2$
 $P(A \cup B) \ge 8$ $P(A \cup A_{2}) \ge 9, 2$
 $P(A \cup B) \ge 8$ $P(A \cup A_{2}) \ge 9, 2$
 $P(A \cup B) \ge 8$ $P(A \cup A_{2}) \ge 9, 2$
 $P(A \cup B) \ge 8$ $P(A \cup A_{2}) \ge 9, 2$
 $P(A \cup B) \ge 8$ $P(A \cup A_{2}) \ge 9, 2$
 $P(A \cup B) \ge 8$ $P(A \cup A_{2}) \ge 9, 2$
 $P(A \cup B) \ge 8$ $P(A \cup A_{2}) \ge 9, 2$
 $P(A \cup B) \ge 8$ $P(A \cup A_{2}) \ge 9, 2$
 $P(A \cup B) \ge 8$ $P(A \cup A_{2}) \ge 9, 2$
 $P(A \cup B) \ge 8$ $P(A \cup A_{2}) \ge 9, 2$
 $P(A \cup B) \ge 8$ $P(A \cup A_{2}) \ge 9, 2$
 $P(A \cup B) \ge 8$ $P(A \cup A_{2}) \ge 9, 2$
 $P(A \cup B) \ge 8$ $P(A \cup A_{2}) \ge 9, 2$
 $P(A \cup B) \ge 8$ $P(A \cup A_{2}) \ge 9, 2$
 $P(A \cup B) \ge 8$ $P(A \cup A_{2}) \ge 9, 2$
 $P(A \cup B) \ge 8$ $P(A \cup A_{2}) \ge 9, 2$
 $P(A \cup B) \ge 8$ $P(A \cup A_{2}) \ge 9, 2$
 $P(A \cup B) \ge 8$ $P(A \cup A_{2}) \ge 9, 2$
 $P(A \cup B) \ge 8$ $P(A \cup A_{2}) \ge 9, 2$
 $P(A \cup B) \ge 8$ $P(A \cup A_{2}) \ge 9, 2$
 $P(A \cup B) \ge 8$ $P(A \cup A_{2}) \ge 9, 2$
 $P(A \cup B) \ge 8, 2$ $P(A \cup A_{2}) \ge 9, 2$
 $P(A \cup B) \ge 8, 2$ $P(A \cup A_{2}) \ge 9, 2$
 $P(A \cup B) \ge 8, 2$ $P(A \cup A_{2}) \ge 9, 2$
 $P(A \cup B) \ge 8, 2$ $P(A \cup A_{2}) \ge 9, 2$
 $P(A \cup B) \ge 8, 2$ $P(A \cup A_{2}) \ge 9, 2$
 $P(A \cup B) \ge 8, 2$ $P(A \cup A_{2}) \ge 9, 2$
 $P(A \cup B) \ge 8, 2$ $P(A \cup A_{2}) \ge 9, 2$
 $P(A \cup B) \ge 8, 2$ $P(A \cup A_{2}) \ge 9, 2$
 $P(A \cup B) \ge 8, 2$ $P(A \cup A_{2}) \ge 9, 2$
 $P(A \cup B) \ge 8, 2$ $P(A \cup A_{2}) \ge 9, 2$
 $P(A \cup B) \ge 8, 2$ $P(A \cup A_{2}) \ge 9, 2$
 $P(A \cup B) \ge 8, 2$
 $P(A \cup A_{2}) \ge 9, 2$
 $P(A \cup A_{$

37. In a right angle triangle the Muan of the hypotenesse is equal to sum of the squanes of other two sides. AABDNDAASC -B D: c AB² = BDXBL - O A ADC ~ AABC AC² = BDCXBL -: AD² + AC² = BCL

8.

$$m_2 : -2/5$$

equation : $y = 0 : -2/5(x+3)$
(A)
 $5y : -2x-6$
 $\sqrt{2x+5y+6} : 0$

39.
$$\tan 45^{\circ} := \frac{30}{20}$$

 $\boxed{2} := \frac{2}{20}$
 $\tan 60^{\circ} := \frac{30 + y}{10}$
 $30^{\circ}3 := \frac{30 + y}{10}$
 $y := \frac{30 + y}{10}$