PART 14 - APPLIED PROBABILITY AND STATISTICS

(Answer ALL questions)

82.

- 76. For any two events A and B, P(A-B) is equal to
 - 1. P(A)-P(B)
 - 2. P(B) P(A)
 - 3. P(B) P(AnB)
 - 4. P(A)-P(AnB)
- 77. Two events A and B such that P(A) = 112and $P(A \cap B) = 114$, then $P(A \cap \overline{B})$ is
 - *I*. 112
 - 2. 314
 - 3. 1
 - 4. 1/3
- 78. If the events A and B are independent, then $P(\overline{A} n B)$ is
 - 1. $P(A)P(\overline{B})$
 - 2. $P(\overline{A})P(\overline{B})$
 - 3. $P(\overline{A})P(B)$
 - 4. None of the above
- 79. With a pair of dice thrown at a time, the probability of getting a sum more than that of 9 is
 - 1. 5118
 - 2. 7/36
 - *3*. 116
 - 4. 7/24
- 80. If A and B are disjoint and P(B) > 0, then P(A/B) is
 - *1*. 1
 - 2. 0
 - **3**. 112
 - 4. 114
- 81. There are two bags. One bag contains 4 red and 5 black balls and the other one contains 5 red and 4 black balls. One ball is to be drawn from either of the two bags. The probability of drawing a black ball is
 - 1. 113
 - 2. 16181
 - 3. 112
 - 4. 10181

The quantity $\sum_{i=1}^{n} (x_i - a)^2$ is minimized, if

the value of 'a' is

1.
$$\sum_{i=1}^{n} x_i$$

2.
$$\sum_{i=1}^{n} \frac{x_i}{n}$$

3.
$$0$$

4.
$$\sum_{i=1}^{n} x_i^2$$

- 83. If the 'n' observations in a sample are denoted by x_1, x_2 , the sample range r is
 - 1. $min(x_i) = max(x_i)$
 - 2. $\max(x_i) + \min(x_i)$
 - 3. $max(x_i)min(x_i)$
 - 4. $max(x_i) min(x_i)$
- 84. If 3 is subtracted from each observation of a set, then the mean of the observation is reduced by
 - 1. 6
 - 2. 3
 - 3. 312
 - 4. -3
- 85. The standard deviation of the five observations 6, 6, 6, 6, 6 is
 - 1. 0
 - 2. 5
 - **3.** 25
 - 4. 125
- 86. If a distribution has mean = 7.5, mode = 10 and skewness a = -0.5, the variance is
 - 1. 5
 - 2. 10
 - 3. 20
 - 4. 25

- 87. First and third quartiles of a frequency distribution are 30 and 75. Also its coefficient of skewness is 0.6. The median of the frequency distribution is
 - 1. 40
 - 2. 39
 - 3. 38
 - 4. 41
- 88. The cumulative distribution function for a random variable X is

$$F(x) = \begin{cases} 1 - e^{-2x}, \ x \ge 0\\ 0, \ x < 0. \end{cases}$$

The value of $P(-3 < X \le 4)$ is

- 1. $e^{-6} e^{-8}$ 2. $e^{-3} - e^{-4}$
- 3. $1 e^{-8}$
- 4. $1 + e^{-3} + e^{-4}$
- 89. The mean and the variance of a binomial distribution are 8 and 4 respectively. Then P(X=1) is equal to
 - 1. $1/2^{12}$
 - 2. $1/2^4$
 - 3. $1/2^6$
 - 4. $1/2^{10}$
- 90. The probability mass function of a random variable X is as follows :

X = x	1	2	3	4
P(X=x)	1/10	2/10	3/10	4/10

The mean and variance of X are

- 1. 1, 3
- 2. 3,0
- **3.** *3*, 2
- 4. 3,1
- 91. The distribution for which the mode does not exist is
 - 1. Normal distribution
 - 2. Gamma distribution
 - 3. Continuous rectangular distribution
 - 4. F-distribution

92. The moment generating function for geometric distribution with parameter p = 1/2 is

1.
$$\frac{1}{2}\left(1-\frac{1}{2}e^{t}\right)$$

2. $\frac{1/2}{\left(1-\frac{1}{2}e^{t}\right)}$
3. $\frac{1}{2}\left(1-\frac{e^{-t}}{2}\right)$
4. $\frac{1/2}{\left(1-\frac{1}{2}e^{-t}\right)}$

93. If a random variable X has the p.d.f. f(x) as

$$f(x) = \begin{bmatrix} cx, 1 \le x \le 2\\ c, 2 \le x \ 13 & \text{the value of 'c 'is} \\ 0, & \text{otherwise,} \end{bmatrix}$$

- 1.
 0.4

 2.
 0.3

 3.
 0.2
- 4. 0.1
- 94. If X and Y are two Poisson variate such that X P(1) and Y P(2), then the probability P(X+Y=3) is
 - 1. $2e^{-3}$
 - 2. $3e^{-3}$
 - 3. $4e^{-3}$
 - 4. $4.5e^{-3}$
- 95. The cumulative distribution function of a continuous uniform distribution of a random variable X lying in the interval (a,b) is
 - $1. \quad \frac{1}{b-a}$ $2 \quad x-a$
 - 2. $\frac{x-a}{b-a}$
 - 3. $\frac{b-a}{a}$
 - $\frac{1}{x-a}$
- bution 4. $\frac{x-b}{b-a}$

- 96. The random variable X follows Poisson distribution and if P(X=1)=3 and P(X=2). Then the variance of X is
 - 1. 1/2
 - 2. 1/3
 - **3.** 1
 - 4. 2
- 97. The moment generating function of the standard normal variate X is

98. If the p.d.f. of a random variable X is given by

$$f(x) = \begin{cases} \frac{1}{4}, & \text{if } |x| < 2\\ 0, & \text{otherwise,} \end{cases}$$

then $P(|X| \ge 1)$ is

- 1. 1/2
- 2. 1/3
- **3.** 114
- 4. 1
- 99. For any non negative random variable X and constant a > 0, the Markov's inequality is
 - 1. $P \{X \le a\} \le \frac{E(x)}{a}$ 2. $P \{X \le a\} \le a E(X)$ 3. $P \{X \ge a\} \ge a E(X)$ 4. $P (X \ge a\} \le \frac{E(X)}{a}$
- 100. Suppose that X is the number of observed "successes" in a sample of n observations where 'p' is the probability of success on each

observation, then
$$\hat{p} = \frac{X}{n}$$
 is

- 1. Biased estimator ofp
- 2. Unbiased estimator of 'n'
- 3. Unbiased estimator of p
- 4. None of the above

- 101. If the observations recorded on five sampled items are 3, 4, 5, 6, 7, the sample variance is
 - 1. 1
 - 2. 1.5
 - 3. 2
 - 4. 2.5
- 102. The terms prosperity, recession, depression and recovery are in particular attached to
 - 1. Secular trend
 - 2. Seasonal fluctuation
 - 3. Cyclical movements
 - 4. Irregular variation
- 103. A sample of 16 items from an infinite population having S.D. = 4, yielded total scores as 160. The standard error of sampling distribution of mean is
 - 1. **1**
 - 2. 112
 - **3.** 114
 - 4. 4
- 104. By the method of moments one can estimate
 - 1. all constants of a population
 - 2. only mean and variance of a distribution
 - 3. all moments of a population distribution
 - 4. all of the above
- 105. If X is a Poisson $(x; \lambda)$, the sufficient statistics for λ is
 - 1. ΣX_i^2 2. ΣX_i 3. $\Sigma \frac{X_i}{n}$ 4. $\Sigma \frac{X_i^2}{n}$

- 106. If X and Y have a bivariate normal distribution with $\rho_{XY} = 0$, then X and Y are
 - 1. independent
 - 2. dependent
 - 3. mutually exclusive
 - 4. none of the above
- 107. If $\rho = \pm 1$, the two lines of regressions are
 - 1. Coincident
 - 2. Parallel
 - 3. Perpendicular to each other
 - 4. None of the above
- 108. If $X_1, X_2, \dots X_n$ are n independent identically distributed random variables, the

correlation between X_i and $\overline{\mathbf{X}} = \sum_{i=1}^{n} X_i$ is

- 1. n
- 2. \sqrt{n} 3. $\frac{1}{\sqrt{n}}$
- 4.
- 109. If the two lines of regression are coincident, the relation between the two regression coefficients is
 - 1. $b_{XY} = b_{YX}$
 - 2. $b_{XY}b_{YX} = 1$
 - 3. $b_{XY} \leq b_{YX}$
 - 4. $b_{YX} \leq b_{XY}$
- 110. If X and Y are two independent variables with variances var(X) = 25 and var(Y) = 15, the correlation coefficient between U = X + Y and V = X - Y is
 - 1. 0.25
 - 2. 0.5
 - 3. 0.75
 - 4. 1

- 111. Value of b in Y = a + bX remains same with the change of
 - 1. origin
 - 2. slope
 - 3. data
 - 4. none of the above
- 112. The best method for finding out seasonal variation is
 - 1. Sample average method
 - 2. Ratio to moving average method
 - 3. Ratio to trend method
 - 4. None of the above
- 113. For the given five values 15, 24, 18, 33, 42, the three years moving averages are
 - 1. 19, 22, 33
 - 2. 19, 25, 31
 - 3. 19, 30, 31
 - 4. 19, 22, 25
- 114. The equation of the parabolic trend is $Y = 46.6 + 2.4X - 1.3X^2$. If the origin is shifted backward by three years the equation of the parabolic trend will be
 - 1. $Y = 27.7 5.4X 1.3X^2$
 - 2. $Y = 51.1 5.4X 1.3X^2$
 - 3. $Y = 27.7 + 10.2X 1.3X^2$
 - 4. None of the above
- 115. Method of least square for determining trend is used when
 - 1. trend is known
 - 2. trend is curvilinear only
 - 3. the value of Y is not a function of time t
 - 4. none of the above