FIITJEE Solutions to NTSE-I (2015) (For Class X Students) (MAT)

INSTRUCTIONS TO CANDIDATES

Read the following instructions carefully before you open the Question Booklet.

1. Use blue/black ball point pen only.
2. Write your Roll No. very clearly (only one digit in on block) on this booklet and on the ANSWER SHEET.
3. This test consists of 50 questions of one mark each. All the questions are COMPULSORY.
4. Answer to each question by filling the correct alternative among the four choices on the answer sheet.

Example:

Q.No.	Alternatives
Correct way:	1
Q.No.	Alternatives
Wrong way:	1

5. Separate sheet has been provided for rough work in this test booklet.

NTSE

STAGE I (MAT)
HINTS \& SOLUTIONS

1. 2

Sol. $\quad p^{2}+q^{2}=2 p q$
$p^{2}+q^{2}-2 p q=0$
$(p-q)^{2}=0$
$p=q$
$\left(\frac{p}{q}\right)^{23}+\left(\frac{q}{p}\right)^{7}$
$=1+1=2$
2. 4

Sol. Let distance be d.
$\therefore \frac{\mathrm{d}}{4}-\frac{\mathrm{d}}{5}=\frac{36}{60}$
$\frac{\mathrm{d}}{20}=\frac{36}{60}$
$\mathrm{d}=12 \mathrm{~km}$
\therefore Actual time to reach on time $=\frac{12}{4}-1=2$ hrs
\therefore Required speed $=6 \mathrm{~km} / \mathrm{hr}$
3. 2

Sol. $\quad 3 A=4 B, \quad 2 C=3 B$
$\frac{\mathrm{A}}{\mathrm{B}}=\frac{4}{3}=\frac{8}{6}, \frac{\mathrm{~B}}{\mathrm{C}}=\frac{2}{3}=\frac{6}{9}$
$\therefore A: B: C=8: 6: 9$
4. 2

Sol. $\quad \mathrm{HCF}=\frac{\mathrm{hcf}(6,4,2)}{\operatorname{lcm}(5,15,5)}$
$=2 / 15$
5. 3

Sol. $\quad 7290=x\left(1-\frac{10}{100}\right)^{3}$
$7290=x\left(\frac{9}{10}\right)^{3}$
$\frac{7290 \times 1000}{729}=x$
$x=\operatorname{Rs} 10000$
6. 4

Sol. $\frac{1}{\sqrt{2}+\sqrt{3}-\sqrt{5}}+\frac{1}{\sqrt{2}-\sqrt{3}-\sqrt{5}}$
$=\frac{\sqrt{2}-\sqrt{3}-\sqrt{5}+\sqrt{2}+\sqrt{3}-\sqrt{5}}{(\sqrt{2}-\sqrt{5}+\sqrt{3})(\sqrt{2}-\sqrt{5}-\sqrt{3})}$
$=\frac{2(\sqrt{2}-\sqrt{5})}{(\sqrt{2}-\sqrt{5})^{2}-(\sqrt{3})^{2}}$
$=\frac{2(\sqrt{2}-\sqrt{5})}{7-2 \sqrt{10}-3}$
$=\frac{2(\sqrt{2}-\sqrt{5})}{4-2 \sqrt{10}}$
$=\frac{2(\sqrt{2}-\sqrt{5})}{2 \sqrt{2}(\sqrt{2}-\sqrt{5})}=\frac{1}{\sqrt{2}}$
7. 4

Sol. $\quad 3^{2 x-y}=3^{x+y}=\sqrt{27}=3^{3 / 2}$
$2 x-y=x+y=\frac{3}{2}$
$2 x-y=\frac{3}{2}$
And $x+y=\frac{3}{2}$
$x=1, y=1 / 2$
$\therefore 3^{x-y}=3^{1 / 2}=\sqrt{3}$
8. 1

Sol. Speed of $A=a \mathrm{~m} / \mathrm{s}$
Speed of $B=b \mathrm{~m} / \mathrm{s}$
$\therefore \frac{100}{\mathrm{~b}}-\frac{100}{\mathrm{a}}=5$ and $\frac{80}{\mathrm{~b}}=\frac{100}{\mathrm{a}}$
$=\frac{\mathrm{a}}{\mathrm{b}}=\frac{5}{4} \Rightarrow \mathrm{~b}=\frac{4 \mathrm{a}}{5}$
$\frac{100}{\frac{4 a}{5}}-\frac{100}{a}=5$
Solving, we get $\mathrm{a}=5 \mathrm{~m} / \mathrm{s}$
9. 3

Sol. $\sqrt{11 \sqrt{11 \sqrt{11 \sqrt{11 \ldots \infty}}}}=x$
$\mathrm{x}^{2}=11 \mathrm{x}$
$x^{2}-11 x=0$
$x(x-11)=0$
$x \neq 0, \Rightarrow x=11$
10. 3

Sol. Since there are only odd multiples of 5 , unit digit in the product will be 5 .
11. 1

Sol. Final change $=$ reduction by $\left(\frac{12}{100}^{2}\right) \%$
$=$ reduction by 1.44%
12. 2

Sol. Let the remainder be $\mathrm{ax}+\mathrm{b}$
$\mathrm{f}(1) \Rightarrow 2=\mathrm{a}+\mathrm{b}$
$\mathrm{f}(-1) \Rightarrow 0=-\mathrm{a}+\mathrm{b}$
$\Rightarrow 2 \mathrm{~b}=2$
$b=1, a=1$
\therefore Remainder $=\mathrm{x}+1$
13. 3

Sol. $\frac{x+7}{2 x}=\frac{2 x+10}{3 x}$ \{basic proportionality theorem $\}$

$$
\Rightarrow 3 x+21=4 x+20
$$

$$
\Rightarrow x=1
$$

14. 2

Sol.

$13+77-x+x+66-x=100$
$156-x=100$
$\mathrm{x}=56$
$\therefore 56 \%$ of total $=784$
Total $=\frac{784 \times 100}{56}=1400$
15. 2

Sol. $\frac{160}{2 \times 7}+\frac{160}{7 \times 12}+\frac{160}{12 \times 17}+\ldots \frac{160}{27 \times 32}$
$=32\left[\frac{5}{2 \times 7}+\frac{5}{7 \times 12}+\ldots+\frac{5}{27 \times 32}\right]$
$=32\left[\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{12}+\ldots+\frac{1}{27}-\frac{1}{32}\right]$
$=32\left[\frac{1}{2}-\frac{1}{32}\right]$
$=32\left[\frac{16-1}{32}\right]$
$=15$
16. 1

Sol. By rule of allegation
$\frac{150-120}{120-x}=\frac{3}{4}$
$\Rightarrow \frac{30}{120-x}=\frac{3}{4}$
$\Rightarrow 120-x=40$
$\Rightarrow x=80$
17. 2

Sol. $\quad \frac{8}{3 / 5}=\frac{x}{2 / 5}$
$x=16 / 3$ hours
= 5 hours 20 minutes
18. 1

Sol. $x\left[\left(1+\frac{1}{x}\right)\left(1+\frac{1}{x+1}\right)\left(1+\frac{1}{x+2}\right)-1\right]$
$=x\left[\frac{x+1}{x} \cdot \frac{x+2}{x+1} \cdot \frac{x+3}{x+2}-1\right]$
$=x\left[\frac{x+3}{x}-1\right]$
$=x\left[\frac{x+3-x}{x}\right]$
$=3$
19. 3

Sol. $\tan \mathrm{x}=1 / 2$

$$
\begin{aligned}
\frac{\cos x+2 \sin x}{\cos x-\sin x} & =\frac{1+\frac{2 \sin x}{\cos x}}{1-\frac{\sin x}{\cos x}}(\text { dividing numerator and denominator by } \cos x) \\
& =\frac{1+2 \tan x}{1-\tan x} \\
& =\frac{1+1}{1-\frac{1}{2}}=4
\end{aligned}
$$

20. 4

Sol. $E C=B C$
$\angle B C E=90+60=150^{\circ}$
$\angle C E B=\angle C B E=15^{\circ}$
$\Rightarrow \mathrm{x}=45^{\circ}$
FIITJEE Ltd., North West Delhi Centre, 31-32-33, Central Market, West Avenue Road, Punjabi Bagh (West), New Delhi - 110026, Ph: 011-45634000
21. 2

Sol. $\frac{(3.75)^{2}+(1.25)^{2}-2 \times(3.75)(1.25)}{(3.75)^{2}-(1.25)^{2}}$
$=\frac{3.75-1.25}{3.75+1.25}=\frac{2.5}{5}=\frac{1}{2}=0.5$
$\left[\because \frac{(a-b)^{2}}{a^{2}-b^{2}}=\frac{a-b}{a+b}\right]$
22. 1

Sol. Let my present age be x

$$
\text { Difference of ages }=31-8=23
$$

$$
\begin{aligned}
& \therefore \text { father }=x+23 \\
& x+23=2 x \\
& x=23
\end{aligned}
$$

23. 2

Sol. Number of digits used $=(1 \times 9)+(2 \times 90)+(3 \times 101)=492$
24. 3

Sol. $\quad x+\frac{1}{x}=2 N$

$$
\begin{aligned}
& \mathrm{x}^{2}+\frac{1}{\mathrm{x}^{2}}+2=4 \mathrm{~N}^{2} \\
& \mathrm{x}^{2}+\frac{1}{\mathrm{x}^{2}}=4 \mathrm{~N}^{2}-2 \\
& \therefore \text { mean of } \mathrm{x}^{2} \text { and } \frac{1}{\mathrm{x}^{2}}=\frac{1}{2}\left(4 \mathrm{~N}^{2}-2\right)=2 \mathrm{~N}^{2}-1
\end{aligned}
$$

25. 3

Sol. $\quad 100^{1 / 6}, 12^{1 / 3}, 3^{1 / 2}$

$$
\begin{aligned}
& \Rightarrow(100)^{1 / 6},\left(12^{2}\right)^{1 / 6},\left(3^{3}\right)^{1 / 6} \\
& \Rightarrow 100^{1 / 6}, 144^{1 / 6}, 27^{1 / 6} \\
& \therefore \text { greatest }=12^{1 / 3}=\sqrt[3]{12}
\end{aligned}
$$

26. 2

Sol.

27. 1

Sol. The pattern is $+2,+1,-1,+2,-2$ respectively of letters as in the English Alphabet.
28. 1

Sol. 3 times

$$
2973173771331738571377173906
$$

29. 1

Sol. $\quad 25^{\text {th }}$ December $2008 \rightarrow$ Thursday
$1^{\text {st }}$ January $2009 \rightarrow$ Thursday
$1^{\text {st }}$ January $2010 \rightarrow$ Friday
30. 3

Sol. The net of the cube that is formed is like

	Brown	
Red	Black	Blue
	White	

\therefore Brown is opposite white.
31. 1

Sol. adjacent to $3 \rightarrow 1,5,4$, 2
\Rightarrow opposite to $3 \rightarrow 6$
adjacent to $4 \rightarrow 3,6,5,2$
\Rightarrow opposite to $4 \rightarrow 1$
\Rightarrow opposite to $5 \rightarrow 2$
32. 3

Sol. $\quad 2$ is opposite to 5
So, sum of the two numbers is 7 .
33. 1

Sol. Q is P's husband and R is P 's daughter.
$\Rightarrow R$ is daughter of Q
34. 2

Sol.

The triangles are: $a, b, c, d, e, f, g, h, a b, b c, c d, ~ e f, f g, g h, b f, c g, a b c, b c d, ~ e f g, f g h, a b c d$, efgh, abef, cdgh
35. 1

Sol.

$\therefore \mathrm{A}$ is to the right of C .
36. 3

Sol. Puru's position $=12^{\text {th }}$ from right $=22^{\text {nd }}$ from left.
\therefore Number of students $=22+12-1=33$
37. 3

Sol.

The distance between A and $B=30+20=50 \mathrm{~m}$.
38. 1

Sol. Dinesh entered at 12:20.
\Rightarrow Naresh entered at 12:40
\Rightarrow meeting time $=12: 10$
39. 2

Sol. By observation.
40. 3

Sol. By observation.
41. 3

Sol. Pattern is:-
$\mathrm{a} \times \mathrm{b}=($ sum of $\mathrm{a}, \mathrm{b})$ (product of a, b)
42. 2

Sol. $15 \times 3 \div 5+5-2$
$\Rightarrow 15 \div 3+5-5 \times 2$
$=5+5-10$
$=0$
43. 3

Sol. The required region is the region outside square and triangle but common to rectangle and circle.
44. 2

Sol. $\quad 11^{2}-9^{2}=40$
Similarly, answer $=25^{2}-21^{2}$
$=184$
45. 3

Sol. $7 \times 8=56$
$15 \times 4=60$
$7 \times 4=28$
\Rightarrow missing number $=8 \times 15=120$
46. 2

Sol. $1 \times 3,3 \times 5,5 \times 7, \underline{7 \times 9}, 9 \times 11,11 \times 13$
47. 4

Sol. In all other figures, the two inner elements are identical but rotated.
48. 1

Sol. In all except 301, difference of first two digits is the third digit.
49. 4

Sol. The pattern is $\mathrm{a}+\mathrm{b}=\sqrt{\mathrm{a}}+\sqrt{\mathrm{b}}$ \therefore Answer $=16+27=43$
50. 4

Sol. 40 R 8 W 10 T 12 P 16 $\Rightarrow 40 \div 8 \times 10-12+16$ $=54$

