BOARD QUESTION PAPER : MARCH 2017

Notes:

i. All questions are compulsory.
ii. Figures to the right indicate full marks.
iii. Answer to every question must be written on a new page.
iv. L.P.P. problem should be solved on graph paper.
v. Log table will be provided on request.
vi. Write answers of Section - I and Section - II in one answer book.

Section - I

Q.1. Attempt any SIX of the following:

i. Find $x, y, \mathrm{z}, \mathrm{w}$ if $\left[\begin{array}{cc}x+y & x-y \\ y+\mathrm{z}+\mathrm{w} & 2 \mathrm{w}-\mathrm{z}\end{array}\right]=\left[\begin{array}{cc}2 & -1 \\ 9 & 5\end{array}\right]$
ii. Express the truth of the following statements with the help of Venn diagrams:
a. No circles are polygon
b. If a quadrilateral is rhombus, then it is a parallelogram.
iii. Find the points of discontinuity, if any for the function:
$\mathrm{f}(x)=\frac{x^{2}-9}{\sin x-9}$
iv. Write negation of the following statements:
a. The number 6 is an even number or the number 25 is a perfect square.
b. If $x \in \mathrm{~A} \cap \mathrm{~B}$, then $x \in \mathrm{~A}$ and $x \in \mathrm{~B}$
v. Evaluate : $\int \cos ^{2} x \cdot \mathrm{~d} x$
vi. Find $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$, if $y=\log x$.
vii. Evaluate : $\int \frac{\mathrm{e}^{x}+1}{\mathrm{e}^{x}+x} \cdot \mathrm{~d} x$
viii. Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$, if $x^{3}+y^{2}+x y=10$
Q.2. (A) Attempt any TWO of the following:
i. Find the inverse of the matrix $\left[\begin{array}{lll}1 & 2 & 3 \\ 1 & 1 & 5 \\ 2 & 4 & 7\end{array}\right]$ by adjoint method.
ii. If $\mathrm{f}(x)=\frac{\mathrm{e}^{2 x}-1}{\mathrm{a} x}$, for $x<0, \mathrm{a} \neq 0$

$$
\begin{aligned}
& =1, \quad \text { for } x=0 \\
& =\frac{\log (1+7 x)}{\mathrm{b} x}, \text { for } x>0, \mathrm{~b} \neq 0
\end{aligned}
$$

is continuous at $x=0$, then find a and b .

Std. XII : Commerce (Maths - I)
iii. Demand function x, for a certain commodity is given as $x=200-4 \mathrm{p}$ where p is the unit price.
Find : a. elasticity of demand as function of p.
b. elasticity of demand when $p=10$, interpret your result.
(B) Attempt any TWO of the following:
i. Using the truth table verify that
$p \vee(q \wedge r)=(p \vee q) \wedge(p \vee r)$.
ii. If the demand function is $D=150-p^{2}-3 p$, find marginal revenue, average revenue and elasticity of demand for price $\mathrm{p}=3$.
iii. Evaluate: $\int_{0}^{\frac{\pi}{2}} \frac{\sin x \cdot \cos x}{1+\sin ^{4} x} \cdot \mathrm{~d} x$.
Q.3. (A) Attempt any TWO of the following:
i. Solve the following equations by reduction method:
$x+3 y+3 z=16$
$x+4 y+4 z=21$
$x+3 y+4 z=19$
ii. If the function
$\mathrm{f}(x)=\frac{15^{x}-3^{x}-5^{x}+1}{x \tan x}, x \neq 0$ is continuous at $x=0$, then find $\mathrm{f}(0)$.
iii. Examine the function $\mathrm{f}(x)=x+\frac{25}{x}$ for maxima and minima
(B) Attempt any TWO of the following:
i. Find the volume of a solid obtained by the complete revolution of the ellipse $\frac{x^{2}}{36}+\frac{y^{2}}{25}=1$ about X - axis.
ii. If $x^{3} y^{5}=(x+y)^{8}$, then show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{y}{x}$
iii. Evaluate : $\int \frac{(1+\log x)}{x(2+\log x)(3+\log x)} \cdot \mathrm{d} x$

