BOARD QUESTION PAPER : MARCH 2017

Notes:

- i. All questions are compulsory.
- ii. Figures to the right indicate full marks.
- iii. Answer to every question must be written on a new page.
- iv. L.P.P. problem should be solved on graph paper.
- v. Log table will be provided on request.
- vi. Write answers of Section I and Section II in one answer book.

Section – I

Q.1.	Atte	mpt any SIX of the following:	[12]
	i.	Find x, y, z, w if $\begin{bmatrix} x+y & x-y \\ y+z+w & 2w-z \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ 9 & 5 \end{bmatrix}$	(2)
	ii.	Express the truth of the following statements with the help of Venn diagrams:	
		a. No circles are polygon	
		b. If a quadrilateral is rhombus, then it is a parallelogram.	(2)
	iii.	Find the points of discontinuity, if any for the function:	
		$f(x) = \frac{x^2 - 9}{\sin x - 9}$	(2)
	iv.	Write negation of the following statements:	
		a. The number 6 is an even number or the number 25 is a perfect square.	
		b. If $x \in A \cap B$, then $x \in A$ and $x \in B$	(2)
	v.	Evaluate : $\int \cos^2 x \cdot dx$	(2)
	vi.	Find $\frac{d^2 y}{dx^2}$, if $y = \log x$.	(2)
	vii.	Evaluate : $\int \frac{e^x + 1}{e^x + x} dx$	(2)
	viii.	Find $\frac{dy}{dx}$, if $x^3 + y^2 + xy = 10$	(2)
Q.2.	(A)	Attempt any TWO of the following:	[6][14]
		$\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$	
	i.	Find the inverse of the matrix $\begin{bmatrix} 1 & 1 & 5 \\ 2 & 4 & 7 \end{bmatrix}$ by adjoint method.	(3)
	ii.	If $f(x) = \frac{e^{2x} - 1}{ax}$, for $x < 0$, $a \ne 0$	
		= 1, for x = 0	
		$=\frac{\log(1+7x)}{bx}$, for $x > 0$, $b \neq 0$	

is continuous at x = 0, then find a and b.

(3)

Std. XII : Commerce (Maths - I)

	iii.	Demand function x, for a certain commodity is given as $x = 200 - 4p$ where p is the unit price. Find : a elasticity of demand as function of p	
		b. elasticity of demand when $p = 10$, interpret your result.	(3)
	(B)	Attempt any TWO of the following:	[8]
	1.	$p \lor (q \land r) = (p \lor q) \land (p \lor r).$	(4)
	ii.	If the demand function is $D = 150 - p^2 - 3p$, find marginal revenue, average revenue and elasticity of demand for price $p = 3$.	(4)
	iii.	Evaluate: $\int_{0}^{\frac{\pi}{2}} \frac{\sin x \cdot \cos x}{1 + \sin^4 x} \cdot dx.$	(4)
Q.3.	(A) i	Attempt any TWO of the following: Solve the following equations by reduction method:	[6][14]
	1.	solve the following equations by reduction method: x + 3y + 3z = 16	
		x + 4y + 4z = 21	
		x + 3y + 4z = 19	(3)
	ii.	If the function	
		$f(x) = \frac{15^x - 3^x - 5^x + 1}{x \tan x}, x \neq 0 \text{ is continuous at } x = 0, \text{ then find } f(0).$	(3)
	iii.	Examine the function $f(x) = x + \frac{25}{x}$ for maxima and minima	(3)
	(B)	Attempt any TWO of the following:	[8]
	i.	Find the volume of a solid obtained by the complete revolution of the ellipse $\frac{x^2}{36} + \frac{y^2}{25} = 1$	
		about X – axis.	(4)
	ii.	If $x^3y^5 = (x+y)^8$, then show that $\frac{dy}{dx} = \frac{y}{x}$	(4)
	iii.	Evaluate : $\int \frac{(1+\log x)}{x(2+\log x)(3+\log x)} \cdot dx$	(4)