BOARD QUESTION PAPER : JULY 2016

Notes:

i. All questions are compulsory.
ii. Figures to the right indicate full marks.
iii. Answer to every question must be written on a new page.
iv. L.P.P. problem should be solved on graph paper.
v. Log table will be provided on request.
vi. Write answers of Section - I and Section - II in one answer book.

Section - I

Q.1. Attempt any SIX of the following:

i. Evaluate: $\int \frac{\mathrm{e}^{3 x}}{\mathrm{e}^{3 x}+1} \mathrm{~d} x$
ii. The price P for demand D is given as $P=183+120 D-3 D^{2}$, find D for which price is increasing.
iii. Write the truth value of the negation of each of the following statements:
(a) The Sun sets in the East
(b) $\cos ^{2} \theta+\sin ^{2} \theta=1$, for all $\theta \in R$
iv. Simplify the following:

$$
\left\{3\left[\begin{array}{ccc}
1 & 2 & 0 \\
0 & -1 & 3
\end{array}\right]-\left[\begin{array}{ccc}
1 & 5 & -2 \\
-3 & -4 & 4
\end{array}\right]\right\}\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]
$$

v. Examine the continuity of f at $x=1$, if

$$
\begin{align*}
\mathrm{f}(x) & =5 x-3, \text { for } 0 \leq x \leq 1 \\
& =x^{2}+1, \text { for } 1 \leq x \leq 2 \tag{2}
\end{align*}
$$

vi. Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$, if $y=x^{\mathrm{e}^{x}}$
vii. If $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & a & 2 \\ 5 & 7 & 3\end{array}\right]$ is a singular matrix, find the value of ' a '.
viii. Evaluate: $\int \frac{1}{\sqrt{x^{2}-4 x+2}} \mathrm{~d} x$
Q.2. (A) Attempt any TWO of the following:
i. Show that the following statement pattern is contingency:

$$
\begin{equation*}
(\sim \mathrm{p} \vee \mathrm{q}) \rightarrow[\mathrm{p} \wedge(\mathrm{q} \vee \sim \mathrm{q})] \tag{3}
\end{equation*}
$$

ii. If $\mathrm{f}(x)=\frac{\mathrm{e}^{2 x}-1}{\mathrm{a} x} \quad$, for $x<0, \mathrm{a} \neq 0$

$$
\begin{aligned}
& =1 \quad, \text { for } x=0 \\
& =\frac{\log (1+7 x)}{\mathrm{b} x}, \text { for } x>0, \mathrm{~b} \neq 0
\end{aligned}
$$

is continuous at $x=0$, then find a and b .
iii. If $x^{y}=\mathrm{e}^{x-y}$, then show that
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\log x}{(1+\log x)^{2}}$
(B) Attempt any TWO of the following:
i. Evaluate: $\int_{0}^{1} x \cdot \tan ^{-1} x \mathrm{~d} x$
ii. If $A=\left[\begin{array}{ccc}1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3\end{array}\right]$, verify that
$\mathrm{A}(\operatorname{adj} \mathrm{A})=(\operatorname{adj} \mathrm{A}) \mathrm{A}=|\mathrm{A}| . \mathrm{I}$
iii. A manufacturer can sell x items at a price of $₹(280-x)$ each. The cost of producing x items is $₹\left(x^{2}+40 x+35\right)$. Find the number of items to be sold so that the manufacturer can make maximum profit.
Q.3. (A) Attempt any TWO of the following:
i. Find k , if the function f is continuous at $x=0$, where

$$
\begin{align*}
\mathrm{f}(x) & =\frac{\left(\mathrm{e}^{x}-1\right)(\sin x)}{x^{2}} & , x \neq 0 \\
& =\mathrm{k} & , x=0 \tag{3}
\end{align*}
$$

ii. Differentiate $\log \left(1+x^{2}\right)$ w.r.t. $\cot ^{-1} x$
iii. Using the Venn diagram, examine the logical equivalence of the following statements:
a. Some politicians are actors.
b. There are politicians who are actors.
c. There are politicians who are not actors.
(B) Attempt any TWO of the following:
i. Find the volume of the solid generated by the complete revolution of the ellipse $\frac{x^{2}}{36}+\frac{y^{2}}{25}=1$ about Y -axis.
ii. Evaluate: $\int \frac{x^{2}}{x^{4}+5 x^{2}+6} \mathrm{~d} x$
iii. The total cost of manufacturing x articles is $\mathrm{C}=\left(47 x+300 x^{2}-x^{4}\right)$. Find x, for which average cost is
a. increasing
b. decreasing.

