BOARD QUESTION PAPER : OCTOBER 2015

Notes:

i. All questions are compulsory.
ii. Figures to the right indicate full marks.
iii. Answer to every question must be written on a new page.
iv. L.P.P. problem should be solved on graph paper.
v. Log table will be provided on request.
vi. Answers to the questions in Section - I and Section - II should be written in two separate answer books.

Section - I

Q.1. Attempt any SIX of the following:

i. Find x and y if $x+y=\left[\begin{array}{ll}7 & 0 \\ 2 & 5\end{array}\right], x-y=\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right]$
ii. Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ if $y=\sin ^{-1}\left(\sqrt{1-x^{2}}\right)$
iii. Use the quantifiers to convert each of the following open sentences defined on N into true statement:
a. $\quad 5 x-3<10$
b. $\quad x^{2} \geq 1$
iv. Examine the continuity of the following function:
$\left.\begin{array}{rlrl}\mathrm{f}(x) & =\frac{x^{2}-16}{x-4}, & & \text { for } x \neq 4 \\ & =8, & & \text { for } x=4\end{array}\right\}$ at $x=4$
v. Find the adjoint of the matrix $\mathrm{A}=\left[\begin{array}{cc}2 & -3 \\ 3 & 5\end{array}\right]$
vi. Find the elasticity of demand if the marginal revenue is ₹ 50 and price is ₹ 75 .
vii. Evaluate: $\int \frac{\tan \sqrt{x}}{\sqrt{x}} \mathrm{~d} x$
viii. Evaluate: $\int \frac{1}{x^{2}+8 x+20} \mathrm{~d} x$
Q.2. (A) Attempt any TWO of the following:
i. Write converse, inverse and contrapositive of the statement.
"If two triangles are not congruent then their areas are not equal."
ii. Examine the continuity of the following function:

$$
\begin{align*}
\mathrm{f}(x) & =x^{2} \cos \left(\frac{1}{x}\right), \text { for } x \neq 0 \tag{3}\\
& =0, \tag{3}
\end{align*} \quad \text { for } x=0 \text { at } x=0
$$

iii. Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ if $y=x^{x}+5^{x}$
(B) Attempt any TWO of the following:
i. Solve the following equations by reduction method:
$x+2 y+z=8$
$2 x+3 y-\mathrm{z}=11$
$3 x-y-2 z=5$
ii. Find the volume of the solid obtained by revolving about the X -axis, the region bounded by the curve $\frac{x^{2}}{4}-\frac{y^{2}}{9}=1$ and the lines $x=2, x=4$
iii. If the demand function is $\mathrm{D}=50-3 \mathrm{p}-\mathrm{p}^{2}$, find the elasticity of demand at
a. $p=5, \quad$ b. $\quad p=2, \quad$ Interpret your result.
Q.3. (A) Attempt any TWO of the following:
i. By constructing the truth table, determine whether the following statement pattern is a tautology, contradiction or contingency.
$(\mathrm{p} \rightarrow \mathrm{q}) \wedge(\mathrm{p} \wedge \sim \mathrm{q})$
ii. If $\mathrm{f}(x)=\frac{1-\sin x}{(\pi-2 x)^{2}}$, for $x \neq \frac{\pi}{2}$ is continuous at $x=\frac{\pi}{2}$, then find $\mathrm{f}\left(\frac{\pi}{2}\right)$.
iii. If $x^{5 / 3} y^{2 / 3}=(x+y)^{7 / 3}$, then show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{y}{x}$.
(B) Attempt any TWO of the following:
i. Cost of assembling x wall clocks is $\left(\frac{x^{3}}{3}-40 x^{2}\right)$ and labour charges are $500 x$.

Find the number of wall clocks to be manufactured for which average cost and marginal cost attain their respective minimum.
ii. Evaluate: $\int_{0}^{1} \frac{x \cdot\left(\sin ^{-1} x\right)^{2}}{\sqrt{1-x^{2}}} \mathrm{~d} x$
iii. Evaluate: $\int \log \left(1+x^{2}\right) \mathrm{d} x$

