BOARD QUESTION PAPER : MARCH 2015

Notes:

Q.2.

- i. All questions are compulsory.
- ii. Figures to the right indicate full marks.
- iii. Answer to every question must be written on a new page.
- iv. L.P.P. problem should be solved on graph paper.
- v. Log table will be provided on request.

Q.1. Attempt any SIX of the following:

vi. Write answers of Section - I and Section - II in one answer book.

Section – I

[12]

•	Auc	mpt any 51X of the following.	
	i.	Express the following statement in symbolic form and write its truth value.	
		"If 4 is an odd number, then 6 is divisible by 3."	(2)
	ii.	Find the values of x and y , if	
		$2\begin{bmatrix} 1 & 3\\ 0 & x \end{bmatrix} + \begin{bmatrix} y & 0\\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 6\\ 1 & 8 \end{bmatrix}$	(2)
	iii.	Find the value of 'k' if the function	
		$f(x) = \frac{\tan 7x}{2x}, \text{for } x \neq 0$	
		= k, for $x = 0$	
		is continuous at $x = 0$	(2)
	iv.	Find $\frac{dy}{dx}$ if $y = \cos^{-1}(\sqrt{x})$	(2)
	v.	The price P for demand D is given as $P = 183 + 120D - 3D^2$.	
		Find D for which the price is increasing.	(2)
	vi.	Evaluate: $\int \frac{1}{x(3+\log x)} dx$	(2)
	vii.	If A = $\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$ show that A ² - 3A + I = 0	(2)
	viii.	Evaluate: $\int x \cos x dx$.	(2)
•	(A)	Attempt any TWO of the following:	[6][14]
	i.	Prove that the following statement pattern is equivalent:	
		$(p \lor q) \rightarrow r \text{ and } (p \rightarrow r) \land (q \rightarrow r)$	(3)
	ii.	Examine the continuity of the following function:	
		$ \begin{array}{l} f(x) = x^2 - x + 9, & \text{for } x \le 3 \\ = 4x + 3, & \text{for } x > 3 \end{array} \right\} \text{ at } x = 3 $	
		$= 4x + 3, \qquad \text{for } x > 3 \downarrow $	(3)
	iii.	Find $\frac{dy}{dx}$ if $y = \tan^{-1}\left(\frac{6x}{1-5x^2}\right)$	(3)
			329

Std. XII : Commerce (Maths - I)

	(B) i.	Attempt any TWO of the following: Find the inverse of the following matrix by elementary row transformations if it exists. $\begin{bmatrix} 1 & 2 & -2 \end{bmatrix}$	[8]
		$\mathbf{A} = \begin{bmatrix} 1 & 2 & -2 \\ 0 & -2 & 1 \\ -1 & 3 & 0 \end{bmatrix}$	(4)
	ii.	Find area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	(4)
	iii.	The expenditure E_c of a person with income I is given by $E_c = (0.000035)I^2 + (0.045)$ I. Find marginal propensity to consume (MPC) and marginal propensity to save (MPS) when I = 5000. Also find A (average) PC and A (average) PS.	(4)
Q.3.	(A) i.	 Attempt any TWO of the following: Express the truth of each of the following statements by Venn diagram: a. Some hardworking students are obedient. b. No circles are polygons. 	[6][14]
	ii.	c. All teachers are scholars and scholars are teachers. If 'f' is continuous at $x = 0$, then find f(0).	(3)
		$f(x) = \frac{15^x - 3^x - 5^x + 1}{x \tan x}, x \neq 0$	(3)
	iii.	Find $\frac{dy}{dx}$ if $x = e^{2t}$, $y = e^{\sqrt{t}}$	(3)
	(B)	Attempt any TWO of the following:	[8]
	i.	Evaluate: $\int \frac{(1+\log x)}{x(2+\log x)(3+\log x)} dx$	(4)
	ii.	Evaluate: $\int_{0}^{\frac{\pi}{2}} \frac{dx}{1 + \cot x}$	(4)
	iii.	A firm wants to maximize its profit. The total cost function is $C = 370 Q + 550$ and revenue is $R = 730Q$. $3Q^2$ Find the output for which profit is maximum and also find the profit	

iii. A firm wants to maximize its profit. The total cost function is C = 370 Q + 550 and revenue is $R = 730Q - 3Q^2$. Find the output for which profit is maximum and also find the profit amount at this output. (4)