SECOND TERMINAL EXAMINATION- DEC 2018 (SSE 24)

PLUS TWO PHYSICS – ANSWER KEY(Prepared By Ayyappan C, HSST, GHSS Udma)

Qn No	Value points Score					
1	increases					
2	Circle					
3	Focal length increases					
4	Diffraction					
5	If E were not normal to the surface, it would have some non-zero component along the surface. Free charges on the surface of the conductor would then experience force and move					
6	a) Fig 2 b) Current	1 1				
7	a) $dB = \frac{\mu_0}{4\pi} \frac{Idl\sin\theta}{r^2}$ b) Electric field is due to scalar source , magnetic field is due to vector source or any other	1 1				
	difference					
8	 a) gets strongly magnetised when placed in an external magnetic field b) retentivity – A, coercivity - C 	1 1				
9	a) Angle of declination (D) Angle of Dip or inclination (I) ,Horizontal component of earth's magnetic field (B _H)	1 ½				
	b) zero	1/2				
10	a) eddy current	1				
	b) magnetic braking, induction furnace or any other two	1				
11	a) dispersion	1				
	b)	1				
12	a) Gauss's law	1				
	b) $\frac{\phi_1}{\phi_2} = \frac{\frac{Q}{\varepsilon_0}}{\frac{4Q}{\varepsilon_0}} = \frac{1}{4}$	2				
13	a) $B = \frac{\mu_0 I}{2\pi r}$	1				
	b) I = 20 A, r = 5 cm = 0,05 m, $B = \frac{\mu_0 I}{2\pi r} = \frac{4\pi \times 10^{-7} \times 20}{2 \times \pi \times 0.05} = 800 \times 10^{-7} T$	2				
14	a) $N\phi_{R} = NBA = (nl)\mu_{0}nIA = \mu_{0}n^{2}IAl$, but $N\phi_{R} = LI$ Thus comparing $L = \mu_{0}n^{2}Al$	2				
	b) When number of turn is doubled , self inductance becomes 4 times	1				
15	a) The ratio of resonance frequency to the band width, $Q = \frac{\omega_0 L}{R} = \frac{1}{\omega_0 CR}$	2				
	b) Q is proportional to sharpness	1				

16	a) Current due to changing electric field	1
	b) $I_d = \varepsilon_0 \frac{d\phi_E}{dt}$	2
17	a) Double slit	1
	b) Constructive nath difference = n) destructive nath difference = $(n + \frac{1}{n})\lambda$	
	b) constructive, path anterence = int, destructive, path anterence = $(n + 2)^n$	2
18	a) $\frac{1}{1} = \frac{1}{1} + \frac{1}{1} + \frac{1}{1}$	1
	$C C_1 C_2 C_3$	3
10	b) $2 4 = 6, 6$ series $3 = 2$ micro farad	
19	a) $\mathcal{E} = Blv$ $\mathcal{E} = Blv$	1
	b) $I = \frac{c}{R} = \frac{BT}{R}$	1
	$E = HB = B^2 l^2 v$	
	$F = IIB = \frac{R}{R}$	2
	$a = \frac{F}{E} = \frac{B^2 l^2 v}{E^2 l^2 v}$	
	m mR	
20	a) LCR circuit, $v = v_m \sin \omega t$	1
		2
		2
	$\mathbf{v}_{\mathbf{L}}$ $\omega t + \phi$ ψt	
	$\mathbf{v}_{c} + \mathbf{v}_{c}$	2
	v _c	
	$\frac{1}{2} = \frac{1}{2} \frac{1}{(R^2 + (K - K))^2} \frac{d}{d} = \tan^{-1}(X_L - X_c)$	
	c) $Z = \sqrt{(R + (X_L - X_C))}$, $\psi - \tan \frac{R}{R}$	
21	a) $B_0 = E_0/c = 36/(3 \times 10^8) = 12 \times 10^{-8} T$	1
	b) $K = 1.2 \times 10^7 = 2 \times 3.14 / \lambda$, $f = c / \lambda$ c) $B = 12 \times 10^{-8} \sin(1.2 \times 10^7 z - 3.60 \times 10^{15} t)$	2
		1
22		-
	M	
	$iC_{Q} r_1 r_2 C_R$	
	Ň	
	P	1
	a) B C	
	b)	2
	c) $\angle A + \angle QNR = 180^\circ$ $r_1 + r_2 + \angle QNR = 180^\circ$ $r_1 + r_2 = A$	_
	We know , exterior angle = sum of interior angles, thus $d = (i - r_1) + (e - r_2)$	
23	d = (i + e - A)	1
	b) Proof	3

24	a)	When a steady current (I) flows through a wire of uniform area of cross section, the potential difference between any two points of the wire is directly proportional to the length of the wire	1
		between the two points.	
	b)	Potential difference along R1 decreases and hence balancing length decreases	2
	c)		2
	0,	$R(l_1-l_2)$	
		$r = \frac{l_1 + l_2}{l_2}$	
25		step up transformer	1
			2
	2)	$N_s > N_p, V_s > V_p \text{ and } i_s < i_p$	-
	b)	Ns/Np =Vs/Vp, substitution, calculation	2
	c)	Copper loss, eddy current loss, magnetic flux leakage. Hysteresis loss	
26			2
		$\begin{array}{c c} A \\ A $	
		B' B O B K E	
		Objective A'	
			2
	a)		1
		$m = (\frac{L}{c})(\frac{D}{c})$	
	b)	I _o I _e	
	c)	For large magnification	