Prepared By : ANOOP CHANDRAN S

Part III
CHEMISTRY

CODE :

$\begin{aligned} & \text { Qn } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Sub. } \\ & \text { Qn } \end{aligned}$	Value Points	Split score	Total Score
1		$\mathrm{LiCl}, \mathrm{BeH}_{2}, \mathrm{BCl}_{3}$ (incomplete octet) $\mathrm{PCl}_{5}, \mathrm{SF}_{6}$ (Expanded Octet) (Write any one example)	-	1
2		(b) or Displacement Reaction		1
3		$\mathrm{Zn}+2 \mathrm{NaOH} \longrightarrow \underset{\text { Sodium Zincate }}{ } \mathrm{Na}_{2} \mathrm{ZnO}_{2}+\mathrm{H}_{2}$		1
4		$\begin{aligned} & \text { Formulae units }=\text { No.of moles } \times \mathrm{N}_{\mathrm{A}} \\ & \therefore \text { Formulae units of } 1 \mathrm{~mol} \mathrm{NaCl} \text { is }=1 \times \mathrm{N}_{\mathrm{A}}=\mathrm{N}_{\mathrm{A}} \\ & \qquad=6.022 \times 10^{23} \end{aligned}$		1
5		(c) or Group 18 elements.		1
6		SP ${ }^{2}$ Hybridization		1
7		Lithium (Li)		1
8		NH_{3}, Due to very high electronegativity of F atom Dipole due to Lone pair of Electron on NF_{3} is opposite To the resultant dipole of $3 \mathrm{~N}-\mathrm{F}$ bonds.		2
9		It is due to two wrong assumptions made in kinetic Theory. They are; - The volume of a gas molecule is negligible Compared to the total volume hence can be Neglected. - There is no force of intermolecular force attraction.		2
10		Pressure,Volume,Temperature - State Functions Heat - Path Function	$\begin{array}{\|l\|} \mathbf{1} \\ \mathbf{1} \end{array}$	2
11		$\begin{aligned} \mathrm{P}^{\mathrm{H}} & =-\log \left[\mathrm{H}^{+}\right] \\ {\left[\mathrm{H}^{+}\right] } & =0.02 \mathrm{M}=2 \times 10^{-2} \mathrm{M} \\ & =1.69 \sim 1.7 \end{aligned}$	1	2

12	The physical and chemical properties of an element Is the periodic function of their atomic weight.	2	2
13	A given compound always contains same proportion Of elements by mass / weight. Eg: \% of Oxygen in Natural and Synthetic sample Found to be 9.74 in both.	2	2
14	$\text { Wavelength } \begin{aligned} \lambda=\mathrm{h} / \mathrm{P}=\frac{\mathrm{h}}{\mathrm{mv}} & =\frac{\left(6.626 \times 10^{-34}\right)}{(0.1) \times(10)} \\ & =6.626 \times 10^{-34} \mathbf{~ m} . \end{aligned}$		
15			2
16	Properties whose values donot depend on quantity of Matter present in it is called Intensive property. Let X_{m} be a molar property of a quantity X defined by n moles, then, $X_{m}=X / n$ Since Molar volume is for 1 mole it will be $X / 1=X$ Ie, it is independent of quantity. Thus Molar volume is An intensive property.	1 1	2
17	The ability of an atom of a compound to attract the shared pair of Electrons towards it is called Electronegativity. Scale: Paulining Scale / Mullikken - Jaffe Scale / Allered - Rowchow scale (Any one scale)	1 1	2
18	Due to very high electronegativity of Oxygen compared To sulpur, very strong intermolecular attraction is Possible in case of $\mathrm{H}_{2} \mathrm{O}$ not possible for $\mathrm{H}_{2} \mathrm{~S}$.		
19	First Law of Thermodynamics. Total energy of an isolates system is a constant (OR)	$\begin{aligned} & \mathbf{1} \\ & \mathbf{1} \end{aligned}$	2

30	i)	Stock Notation $\mathrm{V}_{2} \mathrm{O}_{5}$ Oxidation no. of $\mathrm{V} ; 2 x+(5 \times-2)=0$ $\begin{aligned} & 2 x+(-10)=0 \\ & 2 x=+10 \\ & x=+10 / 2=+5 . \\ & \mathbf{V}_{\mathbf{2}}(\mathbf{V}) \mathbf{O}_{5} \end{aligned}$ $\mathrm{Fe}_{3} \mathrm{O}_{4}$ Oxidation No. of Fe; $3 x+(4 \times-2)=0$ $\begin{aligned} 3 x+(-8) & =0 \\ 3 x & =8 \\ x & =8 / 3=2.6 \end{aligned}$ This is not a whole number. Actually it is the average $\mathrm{Oxd}^{\mathrm{n}}$ state of $\mathrm{Fe} . \mathrm{Fe}_{3} \mathrm{O}_{4}$ contains $2 \mathrm{Fe}^{3+}$ ion and $1 \mathrm{Fe}^{2+}$ ion \therefore stock notation is Iron(III)Oxide Iron (II)Oxide. Solution Step 1: The skeletal ionic equation is: $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(\mathrm{aq})+\mathrm{SO}_{3}{ }^{2-}(\mathrm{aq}) \rightarrow \mathrm{Cr}^{3+}(\mathrm{aq})$ $+\mathrm{SO}_{4}^{2-(\mathrm{aq})}$ Step 2: Assign oxidation numbers for Cr and S $+6-2+4-2,+3 \quad+6-2$ $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(\mathrm{aq})+\mathrm{SO}_{3}^{2-}(\mathrm{aq}) \rightarrow \mathrm{Cr}(\mathrm{aq})+\mathrm{SO}_{4}^{2-}(\mathrm{aq})$ This indicates that the dichromate ion is the oxidant and the sulphite ion is the reductant. Step 3: Calculate the increase and decrease of oxidation number. and make them equal: from step- 2 we can notice that there is change in oxidation state of chromium and sulphur. Oxidation state of chromium changes form +6 to +3 . There is decrease of +3 in oxidation state of chromium on right hand side of the equation. Oxidation state of sulphur changes from +4 to +6 . There is an increase of +2 in the oxidation state of sulphur on right hand side. To make the increase and decrease of oxidation state equal. place numeral 2 before cromium ion on right hand side and inumeral 3 before sulphate ion on right hand side and balance the chromium and sulphur atoms on both the sides of the equation. Thus we get $\begin{aligned} &+6-2 \\ & \mathrm{Cr}_{2} \mathrm{O}_{+}^{2-}(\mathrm{aq})+3 \mathrm{SO}_{3}^{2-}(\mathrm{aq}) \stackrel{+3}{2 \mathrm{Cr}^{3+}} \underset{+6-2}{+\mathrm{aq})+} \\ & 3 \mathrm{SO}_{+}^{2-}(\mathrm{aq}) \end{aligned}$ Step 4: As the reaction occurs in the acidic medium, and further the ionic charges are not equal on both the sides. add $8 \mathrm{H}^{*}$ on the left to make ionic charges equal $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(\mathrm{aq})+3 \mathrm{SO}_{3}^{2-}(\mathrm{aq})+8 \mathrm{H}^{+} \rightarrow 2 \mathrm{Cr}^{3-}(\mathrm{aq})$ $+3 \mathrm{SO}_{4}^{2-2}(\mathrm{aq})$ Step 5: Finally. count the hydrogen atoms, and add appropriate number of water molecules (i.e.. $4 \mathrm{H}_{2} \mathrm{O}$) on the right to achieve balanced redox change. $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(\mathrm{aq})+3 \mathrm{SO}_{3}^{2-}(\mathrm{aq})+8 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow$ $2 \mathrm{Cr}^{3+}(\mathrm{aq})+3 \mathrm{SO}_{4}^{2-}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	1	4

31	i)	(Only The reactions at each step is sufficient in answer paper) Permanent hardness is due to the presence of soluble Salt of magnesium and calcium in the forms of chlorides And sulphates. (a)Treatment with washing soda (b)Calgon's Method (c)Iron exchange Method (d) Synthetic resin method. [Explain any two methods.] It is because of the small size, Large ionization enthalpy, High electronegativity, large charge to radius ratio etc. Similarities b/w Lithium and Magnesium - Both are harder and lighter than other elements of - Respective group - Both of them react slowly with water and form Nitride By directly combaining with N_{2} - Oxides of both the elements donot combine with Excess Oxygen to give out superoxide. - Carbonates of Li and Mg are unstable and decompose On heating - Both LiCl and MgCl_{2} are soluble in ethanol and are Deliquescent. (Any TWO character is Sufficient) At constant T and $\mathrm{n}: \mathrm{V} \propto \frac{1}{\mathrm{P}} \quad:$ Boyle's Law At constant P and $\mathrm{n}: \mathrm{V} \propto \mathrm{T}:$ Charle's Law At constant P and T: V $\propto \mathrm{n}$: Avogadro's Law From these Laws, we can write $\mathrm{V} \propto \frac{\mathrm{nT}}{\mathrm{P}}$	2	4

ii)	To remove the proportionality sign we have to multiply With a constant ie. R universal Gas Constant. $\mathrm{V}=\frac{\mathrm{RnT}}{\mathrm{P}}$ Or $\mathbf{P V}=\mathbf{n R T}$ $\begin{aligned} & \mathrm{T}_{1}=25^{\circ} \mathrm{C}=25+273=298 \mathrm{~K} \\ & \mathrm{P}_{1}=760 \mathrm{mmHg} \\ & \mathrm{~V}_{1}=600 \mathrm{ml} \\ & \mathrm{P}_{2}=? \\ & \mathrm{~T}_{2}=10^{\circ} \mathrm{C}=283 \mathrm{~K} \\ & \mathrm{~V}_{2}=640 \mathrm{ml} \end{aligned}$ Combined gas equation, $\begin{gathered} \frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2} \mathrm{~V}_{2}}{\mathrm{~T}_{2}} \\ \frac{\mathrm{P}_{1} \mathrm{~V}_{1} \mathrm{~T}_{2}}{\mathrm{~T}_{1} \mathrm{~V}_{2}}=\mathrm{P}_{2} \\ \frac{760 \times 600 \times 283}{298 \times 640}=\mathrm{P}_{2} \\ 676.6 \mathrm{mmHg}=\mathrm{P}_{2} \end{gathered}$

Prepared By : ANOOP CHANDRAN S

anoopchandrac17@gmail.com

7902715940 (Whatsapp)

