CCE PF REVISED

 KARNATAKA SECONDARY EDUCATION EXAMINATION BOARD, MALLESWARAM, BANGALORE - 560003

S. S. L. C. EXAMINATION, MARCH/APRIL, 2019

యూదరి లుతృరగళః

MODEL ANSWERS

దినాంళ : 25. 03. 2019]
Date: 25.03.2019]

Code no. : 81-E

నిష్యయ : గణణిత

Subject : MATHEMATICS

$$
\begin{aligned}
& \text { (ఇంగ్లి风్మో భృఱాంతర / English Version) }
\end{aligned}
$$

[Max. Marks : 100

Qn. Nos.	Ans. Key	Value Points	Marks allotted
I. 1 .	(A)	If the n-th term of an arithmetic progression $a_{n}=24-3 n$, then its 2 nd term is (A) 18 (B) 15 (C) 0 (D) 2 Ans. : 18	1

Qn.

II.
II.

Nos.
Value Points allotted
9.

The given graph represents a pair of linear equations in two variables.
Write how many solution these pair of equations have.

Ans. :
one or unique
$17=6 \times 2+5$ is compared with Euclid's Division lemma $a=b q+r$, then which number is representing the remainder ?

Ans. :

5

Direct answer give full marks.
$1 / 2+1 / 2$
$x=-\sqrt{3}, \quad x=\sqrt{3}$
$x^{2}-3=0$
$(x+\sqrt{3})(x-\sqrt{3})=0$
e

Qn.

 -Nos.

Value Points \quad| Marks |
| :---: |
| allotted |

12. Write the degree of the polynomial $P(x)=2 x^{2}-x^{3}+5$.

Ans. :

3
1

1 $1 / 2$
$=-8$
Write the formula to calculate the curved surface area of the frustum of a cone.

Ans. :
$\pi l\left(r_{1}+r_{2}\right)$
III. 15. Find the sum of first twenty terms of Arithmetic series $2+7+12+\ldots$ using suitable formula.

Ans. :

$$
\begin{array}{rl}
\begin{array}{l}
a=2
\end{array} \quad d=7-2=5 & n=20 \\
S_{n} & =\frac{n}{2}[2 a+(n-1) d] \\
S_{20} & =\frac{20}{2}[2 \times 2+(20-1) \times 5] \\
& =10[4+19 \times 5] \\
& =10 \times 99 \\
S_{20} & =990
\end{array}
$$

$=(-4)^{2}-4 \times 2 \times 3$
$=16-24$
16. In $\triangle A B C, A D \perp B C$ and $A D^{2}=B D \times C D$, prove that

$$
A B^{2}+A C^{2}=(B D+C D)^{2}
$$

Ans. :

In $\quad \triangle A B D$
$A B^{2}=A D^{2}+B D^{2}$

In $\triangle A D C$
$A C^{2}=A D^{2}+C D^{2}$
$1 / 2$
(i) + (ii)
$A B^{2}+A C^{2}=2 A D^{2}+B D^{2}+C D^{2}$
Put $A D^{2}=B D \times C D$
$A B^{2}+A C^{2}=2 B D \cdot C D+B D^{2}+C D^{2}$
$A B^{2}+A C^{2}=(B D+C D)^{2}$

Qn. Nos.	Value Points	Marks allotted

17.

In $\triangle A B C, D E \| B C$. If $A D=5 \mathrm{~cm}, B D=7 \mathrm{~cm}$ and $A C=18 \mathrm{~cm}$, find the length of $A E$.

OR

In the given figure if $P Q \| R S$, prove that $\triangle P O Q \sim \Delta S O R$.

Ans. :

In $\triangle A B C, D E \| B C$

$$
\begin{aligned}
\therefore \quad \frac{A D}{A B} & =\frac{A E}{A C} \\
\frac{5}{12} & =\frac{A E}{18}
\end{aligned}
$$

In $\triangle P O Q$ and $\triangle S O R$

$$
\begin{array}{ll}
\lfloor P=\lfloor S & \text { (Alternate angles) } \\
\lfloor Q=\lfloor R & \text { (Alternate angles) } \\
\underline{L P O Q}=\lfloor R O S & \text { (V.O.A.) } \\
& \text { (A.A. criterion) }
\end{array}
$$

$\triangle P O Q \sim \triangle S O R$.
18. Solve the following pair of linear equations by any suitable method :

$$
\begin{aligned}
& x+y=5 \\
& 2 x-3 y=5 .
\end{aligned}
$$

Ans. :
Substitution method:

$$
\begin{align*}
& x+y=5 \tag{i}\\
& 2 x-3 y=5 \\
& x+y=5 \\
& y=5-x
\end{align*}
$$

Qn.	Value Points	Marks Nos.

Substituting the value of x in equation (i)

$$
\begin{aligned}
& x+y=5 \\
& 4+y=5 \\
& y=5-4 \\
& y=1
\end{aligned}
$$

$$
\begin{array}{ll}
x+y=5 \\
x+y=5 & \ldots \text { (i) } \times 2 \\
2 x-3 y=5 & \ldots \text { (ii) } \\
2 x+2 y=10 & \ldots \text { iii } \\
2 x-3 y=5 & \ldots \text { ii } \\
(-) \quad(+) \quad(-) & \text { (iii) }- \text { (ii) } \\
\hline 5 y=5 & \tag{ii}\\
y=\frac{5}{5} & \\
y=1
\end{array}
$$

Substitute the value of y in equation (i)

$$
\begin{aligned}
& x+y=5 \\
& x+1=5 \\
& x=5-1 \\
& x=4
\end{aligned}
$$

$1 / 2$
$1 / 2$

Elimination method :

$$
1 / 2
$$

2

Qn. Nos.	Value Points	Marks allotted

 allotted

Cross multiplication method:

$$
\begin{aligned}
& 1 \\
& 3 \\
& \frac{1}{-5-15}=\frac{x}{-10+5}=\frac{y}{-3-2} \\
& \frac{x}{-20}=\frac{y}{-5}=\frac{1}{-5} \\
& \frac{x}{-20}=\frac{1}{-5} \\
& -5 x=-20 \\
& x=\frac{-20}{-5} \\
& x=4 \\
& \frac{y}{-5}=-\frac{1}{5} \\
& -5 y=-5 \\
& y=\frac{-5}{-5} \\
& y=1
\end{aligned}
$$

$$
\begin{array}{lllll}
1 & -5 & 1 & 1 & 1 / 2
\end{array}
$$

In the figure, $A B C D$ is a square of side $14 \mathrm{~cm} . A, B, C$ and D are the centres of four congruent circles such that each circle touch externally two of the remaining three circles. Find the area of the shaded region. 2

Ans. :

PF(C)-606

Value Points	Marks allotted

Area of the shaded region $=$
Area of square $-4 \times$ area of quadrant
Area of a square $=(\text { side })^{2}$

$$
=(14)^{2}
$$

Area of the square $=196 \mathrm{~cm}^{2}$
Area of a quadrant $=\frac{1}{4} \pi r^{2}$
$4 \times$ Area of quadrant $=4 \times \frac{1}{4} \pi r^{2}$

$$
=4 \times \frac{1}{4} \times \frac{22}{7} \times 7^{2}
$$

$4 \times$ Area of quadrant $=22 \times 7$

$$
=154 \mathrm{~cm}^{2}
$$

Area of shaded region $=196-154$

Area of shaded region $=42 \mathrm{~cm}^{2}$
2 $1 / 2$
Area of a square $=(\text { side })^{2}$

$$
=(14)^{2}
$$

Area of the square $=196 \mathrm{~cm}^{2}$
Area of a quadrant $=\frac{\theta}{360^{\circ}} \times \pi r^{2}$
$4 \times$ area of a quadrant $=4 \times \frac{90^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 7^{2}$

$$
=154 \mathrm{~cm}^{2}
$$

Area of shaded region $=196-154$
Area of shaded region $=42 \mathrm{~cm}^{2}$.
Alternate method:
Area of the shaded region $=$
Area of a square $-4 \times$ area of quadrant

Note: Any alternate method marks can be given.
[Area of shaded region = Area of a square - Area of a circle]

Qn.	Value Points	Marks Nos.

20. Draw a circle of radius 4 cm and construct a pair of tangents such that the angle between them is 60°.

Ans. :
Angle between the radius $=180^{\circ}-60^{\circ}=120^{\circ}$

Circle -	$1 / 2$
Radii -	$1 / 2$
Tangents -	$1 / 2$

2

Find the co-ordinates of point which divides the line segment joining the points $(4,-3)$ and $(8,5)$ in the ratio $3: 1$ internally. Ans. :

Let $P(x, y)$ be the required point
$(x, y)=\left(\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}, \frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}\right)$

OR

$$
P(x, y)=\left(\frac{m x_{2}+n x_{1}}{m+n}, \frac{m y_{2}+n y_{1}}{m+n}\right)
$$

PF(C)-606

Qn.

Nos.
Value Points

$$
=\left(\frac{3 \times(8)+(4)}{3+1}, \frac{3 \times(5)+1 \times(-3)}{3+1}\right)
$$

$$
=\left(\frac{24+4}{4}, \frac{15-3}{4}\right)
$$

$$
=\left(\frac{28}{4}, \frac{12}{4}\right)
$$

$$
(x, y)=(7,3)
$$

Prove that $3+\sqrt{5}$ is an irrational number.
Ans. :
Let us assume $3+\sqrt{5}$ is a rational number

$$
\begin{aligned}
& 3+\sqrt{5}=\frac{p}{q} \text { where } p, q \in z, q \neq 0 \\
& \sqrt{5}=\frac{p}{q}-3
\end{aligned}
$$

Rearranging this equation

$$
\sqrt{5}=\frac{p-3 q}{q}
$$

$$
1 / 2
$$

Since p and q are integers we get $\frac{p-3 q}{q}$ is rational $1 / 2$ So $\sqrt{5}$ is rational.

But this contradicts the fact that $\sqrt{5}$ is rational
$\therefore \quad 3+\sqrt{5}$ is irrational $\quad 1 / 2$
23.

The sum and product of the zeroes of a quadratic polynomial $P(x)=a x^{2}+b x+c$ are -3 and 2 respectively. Show that $b+c=5 a$.

Ans. :

Qn.	Value Points	Marks allotted

Let α and β are the zeroes of the quadratic polynomial $P(x)$
$\alpha+\beta=-3$
$-\frac{b}{a}=-3$
$-b=-3 a$
$b=3 a$
... (i)
$1 / 2$
$\alpha \beta=2$
$\frac{c}{a}=2$
$c=2 a$
(i) + (ii) gives

$$
\begin{aligned}
& b+c=3 a+2 a \\
& b+c=5 a .
\end{aligned}
$$

Find the quotient and the remainder when $P(x)=3 x^{3}+x^{2}+2 x+5$ is divided by $g(x)=x^{2}+2 x+1$.

Ans. :

$$
\begin{array}{cc}
x^{2}+2 x+1 & \frac{3 x-5}{3 x^{3}+x^{2}+2 x+5} \\
3 x^{3}+6 x^{2}+3 x
\end{array}
$$

$$
\begin{array}{ll}
(-) & (-) \\
\hline & -5 x^{2}-x+5 \\
& -5 x^{2}-10 x-5 \\
& (+) \quad(+) \quad(+) \\
\hline & 9 x+10
\end{array}
$$

$$
\begin{array}{ll}
\text { Quotient }=3 x-5 & 1 / 2 \\
\text { Remainder }=9 x+10 & 1 / 2
\end{array}
$$

25.

Solve $2 x^{2}-5 x+3=0$ by using formula. allotted

Ans. :
Comparing the equation with

$$
\begin{array}{rr}
a x^{2}+b x+c=0 \\
a=2 & b=-5
\end{array}
$$

$$
\begin{aligned}
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{-(-5) \pm \sqrt{(-5)^{2}-4 \times 2 \times 3}}{2 \times 2}
\end{aligned}
$$

$$
x=\frac{5 \pm \sqrt{25-24}}{4}
$$

$$
x=\frac{5 \pm \sqrt{1}}{4}
$$

$$
x=\frac{5 \pm 1}{4}
$$

$$
x=\frac{5+1}{4}, \quad x=\frac{5-1}{4}
$$

$$
x=\frac{6}{4} \quad x=\frac{4}{4}
$$

$$
x=\frac{3}{2} \quad x=1
$$

The length of a rectangular field is 3 times its breadth. If the area of the field is 147 sq.m find its length and breadth.

Ans. :
Let the breadth be, x
\therefore Length $=3 x$

$$
\begin{aligned}
& A=l \times b \\
& 147=3 x \times x \\
& 147=3 x^{2} \\
& x^{2}=\frac{147}{3}
\end{aligned}
$$

If $\sin \theta=\frac{12}{13}$ find the values of $\cos \theta$ and $\tan \theta$.

OR

If $\sqrt{3} \tan \theta=1$ and θ is acute find the value of $\sin 3 \theta+\cos 2 \theta$. Ans. :

$A B^{2}=A C^{2}+B C^{2}$
$13^{2}=12^{2}+B C^{2}$
$169=144+B C^{2}$
$B C^{2}=169-144$
$B C^{2}=25 \quad B C=\sqrt{25}$
$B C=5$
$\cos \theta=\frac{B C}{A C}=\frac{5}{13}$
$\tan \theta=\frac{A C}{B C}=\frac{12}{5}$

OR

Qn.

Nos.

Value Points	Marks
allotted	

28. Prove that $\left(\frac{1+\cos \theta}{1-\cos \theta}\right)=(\operatorname{cosec} \theta+\cot \theta)^{2}$.

Ans. :
L.H.S. $=\left(\frac{1+\cos \theta}{1-\cos \theta}\right)$
$=\frac{(1+\cos \theta)}{(1-\cos \theta)} \times \frac{(1+\cos \theta)}{(1+\cos \theta)}$
$=\frac{(1+\cos \theta)^{2}}{1^{2}-\cos ^{2} \theta}$
$=\frac{(1+\cos \theta)^{2}}{\sin ^{2} \theta}$

$$
\begin{aligned}
& =\left(\frac{1+\cos \theta}{\sin \theta}\right)^{2} \\
& =\left(\frac{1}{\sin \theta}+\frac{\cos \theta}{\sin \theta}\right)^{2}
\end{aligned}
$$

$$
1 / 2
$$

$\frac{1+\cos \theta}{1-\cos \theta}=(\operatorname{cosec} \theta+\cot \theta)^{2}=$ R.H.S.
$1 / 2$

2

Any alternative method, marks can be awarded.
29.

A cubical die numbered from 1 to 6 are rolled twice. Find the probability of getting the sum of numbers on its faces is 10 .

Ans. :
$n(S)=36$
$n(A)=\{(5,5)(4,6)(6,4)\}=3$
$P(A)=\frac{n(A)}{n(S)}$
$=\frac{3}{36}$
30. The radii of two circular ends of a frustum of a cone shaped dustbin are 15 cm and 8 cm . If its depth is 63 cm , find the volume of the dustbin.

Ans. :

$$
r_{1}=15 \mathrm{~cm} \quad r_{2}=8 \mathrm{~cm} \quad h=63 \mathrm{~cm}
$$

Volume of dustbin $(V)=\frac{1}{3} \pi h\left(r_{1}^{2}+r_{2}^{2}+r_{1} r_{2}\right)$

$$
\begin{array}{ll}
=\frac{1}{3} \times \frac{22}{7} \times 63\left(15^{2}+8^{2}+15 \times 8\right) & 1 / 2 \\
=66(225+64+120) & 1 / 2 \\
=66 \times 409 &
\end{array}
$$

Volume of dustbin $(V)=26994 \mathrm{~cm}^{3}$.

If $x, 13, y$ and 3 are in arithmetic progression, find the values of x and y.

Ans. :

$$
\text { Let } \begin{array}{ll}
& x=a+3 d, \quad 13=a+2 d \quad y=a+d \text { and } a=3 \\
& a+2 d=13 \\
& 3+2 d=13 \\
& 2 d=13-3
\end{array}
$$

PF(C)-606

Qn. Nos.	Value Points		Marks allotted
	$\begin{aligned} d & =\frac{10}{2} \\ d & =5 \\ x & =a+3 d \\ & =3+3 \times 5 \\ & =3+15 \\ x & =18 \\ y & =a+d \\ & =3+5 \\ y & =8 \end{aligned}$	$1 / 2$ $1 / 2$ $1 / 2$	2

32. In $\triangle P Q R, E$ and F are points on $P Q$ and $P R$ respectively. If $P E=1 \mathrm{~cm}$, $Q E=2 \mathrm{~cm}, P F=3 \mathrm{~cm}$ and $R F=6 \mathrm{~cm}$, show that $E F \| Q R$.

Ans. :

$\frac{P E}{E Q}=\frac{1}{2}$
$\frac{P F}{F R}=\frac{3}{6}=\frac{1}{2}$
from (i) and (ii)

$$
\frac{P E}{E Q}=\frac{P F}{F R}
$$

$$
1 / 2
$$

$$
\therefore \quad E F \| Q R
$$

$$
1 / 2
$$

Factors of $6=2 \times 3$
Factors of $20=2^{2} \times 5$
H.C.F. $=2$

Marks allotted
L.C.M. $=2^{2} \times 3 \times 5$

$$
=4 \times 3 \times 5
$$

L.C.M. $=60$

Any correct alternate method may be given marks.
34. Draw a tangent to a circle of radius 3 cm from a point 5 cm away from its centre.

Ans. :

Circle -	$1 / 2$
Bisecting $O P-1 / 2$	
Tangents -	1

Bisecting $O P-1 / 2$
Tangents - $\quad 1$

Qn.	Value Points	Marks Nos.

35. In a circle of radius 21 cm an arc subtends an angle of 60° at the centre. Find the length of the arc.

Ans. :
$r=21 \mathrm{~cm} \quad \theta=60^{\circ} \quad 1 / 2$
Length of the arc $=\frac{\theta}{360^{\circ}} \times 2 \pi r$

$$
=\frac{60^{\circ}}{360^{\circ}} \times 2 \times \frac{22}{7} \times 21
$$

Length of the arc $=22 \mathrm{~cm}$
2

Express the given equation in the standard form $(x-2)^{2}+1=2 x+3$.

Ans. :
$(x-2)^{2}+1=2 x+3$
$x^{2}-2 \times x \times 2+2^{2}+1=2 x+3$
$x^{2}-4 x+4+1=2 x+3$ $1 / 2$
$x^{2}-4 x+5=2 x+3$
$x^{2}-4 x+5-2 x-3=0$
Standard form $=x^{2}-6 x+2=0$

Write the probability of sure event and impossible event.
Ans. :

Probability of sure event - 1
Probability of Impossible event - 0

Ans. :

$$
\begin{array}{rlr}
\theta=45^{\circ} & r=4 & 1 / 2 \\
\text { Area of the sector } & =\frac{\theta}{360^{\circ}} \times \pi r^{2} & 1 / 2 \\
& =\frac{45^{\circ}}{360^{\circ}} \times 3 \cdot 14 \times 4^{2} & 1 / 2 \\
& =\frac{1}{8} \times 3 \cdot 14 \times 16 &
\end{array}
$$

Area of the sector $=6.28 \mathrm{~cm}^{2}$
39. Find the distance between (3, 4) from the origin.

Ans. :
Co-ordinates of origin (0,0)
$\left(x_{1}, y_{1}\right)=(0,0) \quad\left(x_{2}, y_{2}\right)=(3,4)$
$d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
$=\sqrt{(3-0)^{2}+(4-0)^{2}}$
$=\sqrt{3^{2}+4^{2}}$
$=\sqrt{9+16}$
$=\sqrt{25}$
$d=5$ units.

Qn. Nos.	Value Points	Marks allotted	
40.	Two coins are tossed together. Find the probability of getting at least		
	one head.	2	
	Ans. :	$1 / 2$	
	$n(S)=4$	$1 / 2$	$1 / 2$
	$n(A)=\{(H, H),(H, T)(T, H)\}=3$	$1 / 2$	2
	$P(A)=\frac{n(A)}{n(S)}$	$1 / 2$	

IV. 41.

Prove that "the lengths of tangents drawn from an external point to a circle are equal".

OR

In the given figure $P Q$ and $R S$ are two parallel tangents to a circle with centre O and another tangent $A B$ with point of contact C intersecting $P Q$ at A and $R S$ at B. Prove that $\left\lfloor A O B=90^{\circ}\right.$.

Ans. :

Data:
O is the centre of the circle P is an external point $P Q$ and $P R$ are the tangents

To prove: $\quad P Q=P R$
Construction: $O Q, O R$ and $O P$ are joined
Proof:
In $\triangle P O Q$ and $\triangle P O R$
$\lfloor P Q O=\lfloor P R O \quad$ (Radius drawn at the point of
contact is perpendicular to the tangent)
hyp $O P=$ hyp $O P$ (Common side)
$O Q=O R$ (Radii of same circle)
$\therefore \quad \triangle P O Q \equiv \triangle P O R \quad$ (R.H.S. theorem)
$\therefore \quad P Q=P R$
Alternate method:

PF(C)-606

Qn. Nos.	Value Points	Marks allotted

Proof: We are given a circle with centre O a point P lying outside the circle and two tangents $P Q$ and $P R$ on the circle from P.

We are required to prove that $P Q=P R$
For this we join $O P, O Q$ and $O R$.
Then $\lfloor O Q P$ and $\lfloor O R P$ are right angles because these are angles between the radii and tangents.

According to theorem $4 \cdot 1$ they are right angles
Now in right angles $\angle O Q P$ and $\angle O R P$

$$
\begin{aligned}
& O Q=O R(\text { Radii of same circle }) \\
& O P=O P(\text { common })
\end{aligned}
$$

Therefore $\triangle O Q P=\triangle O R P \quad$ (R.H.S.)
This gives $P Q=P R$.

Let $\quad O A B=x$
$\therefore \quad \mid O A X=x$
$O B A=y$
$O B Y=y$
$P Q \| R S$
$\therefore \quad \angle X A B+\left\lfloor Y B A=180^{\circ}\right.$
$2 x+2 y=180^{\circ}$
$2(x+y)=180^{\circ}$

Qn. Nos.	Value Points	Marks allotted

42. Calculate the median of the following frequency distribution table: 3

Class-interval	Frequency $\left(f_{i}\right)$
$1-4$	6
$4-7$	30
$7-10$	40
$10-13$	16
$13-16$	4
$16-19$	4

OR
Calculate the mode for the following frequency distribution table.

Class-interval	Frequency $\left(f_{i}\right)$	
$10-25$	2	
$25-40$	3	
$40-55$	7	
$55-70$	6	
$70-85$	6	
$85-100$	6	

Ans. :

PF(C)-606

OR

Lower limit
Frequency of modal class
$l=40$

Frequency of preceding modal class
$f_{1}=7$
$f_{0}=3$
PF(C)-606

43.

During the medical check-up of 35 students of a class, their weights were recorded as follows. Draw a less than type of ogive for the given data:

Weight (in kg)	Number of students
Less than 38	0
Less than 40	3
Less than 42	5
Less than 44	9
Less than 46	14
Less than 48	28
Less than 50	32
Less than 52	35

Ans. :

PF(C)-606

Qn. Nos.	Value Points	Marks allotted
44.	 x and y axis scale - $\quad 1 / 2$ Plotting points - $\quad 11 / 2$ Drawing graph - Note: Scale, x-axis, y-axis can be changed. The seventh term of an Arithmetic progression is four times its second term and twelveth term is 2 more than three times of its fourth term. Find the progression.	3

Qn.	Value Points	Marks Nos.

A line segment is divided into four parts forming an Arithmetic progression. The sum of the lengths of 3rd and 4th parts is three times the sum of the lengths of first two. If the length of fourth part is 14 cm , find the total length of the line segment.

Ans. :
$\left.\begin{array}{l}a_{7}=T_{7}=4\left(T_{2}\right) a_{2} \\ a+6 d=4(a+d)\end{array}\right\}$
$a+6 d=4 a+4 d$
$6 d-4 d=4 a-a$
$2 d=3 a$
$a_{12}=T_{12}=3 T_{4}\left(a_{4}\right)+2$
$a+11 d=3(a+3 d)+2$
$a+11 d=3 a+9 d+2$
$11 d-9 d=3 a-a+2$
$2 d=2 a+2$
substituting (i) in (ii)
$3 a=2 a+2$
$3 a-2 a=2$
$a=2$
$2 d=3 a$
$2 d=3 \times 2$
$2 d=6$
$d=\frac{6}{2}$

$$
d=3
$$

Qn. Nos.		Value Points	
	\therefore	The required sequence	
		a,	$a+d$,
	2,	$2+3$,	$a+2 d$
			$2+2 \times 3$

The required sequence $2, \quad 5, \quad 8 \ldots$.

OR
Let the four parts of the line segment be

$$
a-3 d, a-d, a+d, a+3 d
$$

According to the data

$$
\begin{aligned}
& (a+d+a+3 d)=3(a-3 d+a-d) \\
& 2 a+4 d=3(2 a-4 d) \\
& 2(a+2 d)=3 \times 2(a-2 d) \\
& a+2 d=3 a-6 d \\
& 2 d+6 d=3 a-a \\
& 2 a=8 d \\
& a=\frac{8 d}{2} \\
& a=4 d
\end{aligned}
$$

$$
a+3 d=14
$$

$$
4 d+3 d=14
$$

$$
7 d=14
$$

$$
d=\frac{14}{7}
$$

$$
d=2
$$

$$
a=4 d
$$

$$
a=4 \times 2
$$

$$
a=8
$$

Qn. Nos.	Value Points	Marks allotted	
	\therefore	Length of the line segment $=$	
	$=a-3 d+a-d+a+d+a+3 d$		
	$=4 a$	$1 / 2$	3

The vertices of a $\triangle A B C$ are $A(-3,2), B(-1,-4)$ and $C(5,2)$. If M and N are the mid-points of $A B$ and $A C$ respectively, show that $2 M N=B C$.

OR

The vertices of a $\triangle A B C$ are $A(-5,-1), B(3,-5), C(5,2)$. Show that the area of the $\triangle A B C$ is four times the area of the triangle formed by joining the mid-points of the sides of the triangle $A B C$.

Ans. :

Co-ordinates of $M=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$

$$
=\left(\frac{-1-3}{2}, \frac{-4+2}{2}\right)
$$

Co-ordinates of $M=(-2,-1)$
Co-ordinates of $N=\left(\frac{5-3}{2}, \frac{2+2}{2}\right)$

$$
=\left(\frac{2}{2}, \frac{4}{2}\right)
$$

Co-ordinates of $N=(1,2)$
Length of $M N=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

Qn. Nos.	Value Points	Marks allotted

$$
M N=3 \sqrt{2}
$$

Length of $B C=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

$$
=\sqrt{(5+1)^{2}+(2+4)^{2}}
$$

$$
=\sqrt{6^{2}+6^{2}}
$$

$$
=\sqrt{36+36}
$$

$$
=\sqrt{72}
$$

$$
B C=6 \sqrt{2}
$$

$=\sqrt{9+9}=\sqrt{18}$
$=\sqrt{9 \times 2}=3 \sqrt{2}$

$$
=\sqrt{36 \times 2}
$$

$$
2 M N=2 \times 3 \sqrt{2}
$$

$$
=6 \sqrt{2}
$$

$$
\therefore \quad 2 M N=B C
$$

OR

Area of triangle $A B C=$

$$
\begin{aligned}
& =\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right] \\
& =\frac{1}{2}[-5(-5-2)+3(2+1)+5(-1+5)] \\
& =\frac{1}{2}[5 \times(-7)+3 \times 3+5 \times 4] \\
& =\frac{1}{2}[35+9+20] \\
& =\frac{1}{2} \times 64
\end{aligned}
$$

Area of $\triangle A B C=32$ sq.units
Co-ordinates of $D=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$

$$
\begin{aligned}
& =\left(\frac{-5+3}{2}, \frac{-1-5}{2}\right) \\
& =\left(\frac{-2}{2}, \frac{-6}{2}\right)
\end{aligned}
$$

Co-ordinates of $D=(-1,-3)$

Qn. Nos.	Value Points	Marks allotted

Co-ordinates of $E=\left(4, \frac{-3}{2}\right)$
Co-ordinates of $F=\left(\frac{-5+5}{2}, \frac{-1+2}{2}\right)$

$$
=\left(\frac{0}{2}, \frac{1}{2}\right)
$$

Co-ordinates of $F=\left(0, \frac{1}{2}\right)$
$\left(x_{1}, y_{1}\right)=(-1,-3)\left(x_{2}, y_{2}\right)=\left(4,-\frac{3}{2}\right)\left(x_{3}, y_{3}\right)=\left(0, \frac{1}{2}\right)$
Area of $\triangle D E F=$

$$
\begin{aligned}
& =\frac{1}{2}\left[-1\left(\frac{-3}{2}-\frac{1}{2}\right)+4\left(\frac{1}{2}+3\right)+0\left(-3+\frac{3}{2}\right)\right] \\
& =\frac{1}{2}\left[-1 \times(-2)+4 \times \frac{7}{2}+0\right] \\
& =\frac{1}{2}[2+14] \\
& =\frac{1}{2} \times 16
\end{aligned}
$$

$\triangle D E F=8$ sq. units
$\therefore \quad$ Area of $\triangle A B C=4 \times$ area of $\triangle D E F$

$$
\begin{aligned}
& 32=4 \times 8 \\
& 32=32
\end{aligned}
$$

Note : Any alternate method can be given marks.

Qn.	Value Points	Marks Nos.

46. Construct a triangle with sides $5 \mathrm{~cm}, 6 \mathrm{~cm}$ and 7 cm and then construct another triangle whose sides are $\frac{7}{5}$ of the corresponding
sides of the first triangle.

Ans. :

Constructing given triangle

Drawing acute angle line and dividing into 7 parts

Drawing parallel lines (one pair)
Drawing parallel line (another pair)
Triangle $A^{\prime} B C^{\prime}$

Qn. Nos.	Value Points	Marks allotted

Ans. :

$$
\begin{aligned}
& 2 x+y=6 \\
& y=6-2 x
\end{aligned}
$$

x	0	1	2
y	6	4	2

$$
2 x-y=2
$$

$$
y=2 x-2
$$

x	0	1	2
y	-2	0	2

Tables -
Drawing or Plotting 2 straight lines -
Identifying Intersecting straight line points and answer -

Note : For each line any two points may be taken.

PF(C)-606

Let $A B$ be tower

$$
\begin{array}{rlrl}
& & \angle A C B & =x^{\circ} \\
\therefore & \boxed{A D B} & =90^{\circ}-x
\end{array}
$$

In $\triangle A B C$

$$
\begin{align*}
& \tan x=\frac{A B}{B C} \\
& \tan x=\frac{A B}{4} \tag{i}
\end{align*}
$$

In $\triangle A D B$

$$
\begin{align*}
& \tan \left(90^{\circ}-x\right)=\frac{A B}{9} \\
& \cot x=\frac{A B}{9} \tag{ii}
\end{align*}
$$

(i) \times (ii)
$\tan x \times \cot x=\frac{A B}{4} \times \frac{A B}{9}$
$\tan x \times \frac{1}{\tan x}=\frac{A B^{2}}{36}$

$$
1=\frac{A B^{2}}{36}
$$

$$
A B^{2}=36
$$

$$
A B= \pm \sqrt{36} \quad A B= \pm 6
$$

$\therefore \quad$ Height of the tower $A B=6 \mathrm{~m}$.
Note : C and D can be taken on the same side of $A B$ also.
Alternate method:
$\cot x=\frac{A B}{9}$
$\frac{1}{\tan x}=\frac{A B}{9}$
$\frac{1}{\frac{A B}{4}}=\frac{A B}{9}$
$\frac{4}{A B}=\frac{A B}{9}$
$A B^{2}=36$
$A B= \pm 6$
$A B=6 \mathrm{~m}$.

OR
A hemispherical vessel of radius 14 cm is fully filled with sand. This sand is poured on a level ground. The heap of sand forms a cone shape of height 7 cm . Calculate the area of ground occupied by the circular base of the heap of the sand.

Ans. :

Volume of the vessel is equal to
Volume of the cylinder - Volume of cone
Volume of the cylinder $=\pi r^{2} h$

$$
=\frac{22}{7} \times 7^{2} \times 20
$$

Volume of the cylinder $=3080 \mathrm{~cm}^{3}$

Qn.

Nos.

Value Points	Marks
allotted	

Volume of the cone $=154 \mathrm{~cm}^{3}$
Volume of vessel = Volume of cylinder - volume of cone

$$
\begin{array}{ll}
=3080-154 & \\
=2926 \mathrm{~cm}^{3} & 1 / 2 \\
=\frac{2926}{1000}=2.926 \text { litres. } & 1 / 2
\end{array}
$$

$$
\begin{aligned}
\text { Volume of the cone } & =\frac{1}{3} \pi r^{2} h \\
& =\frac{1}{3} \times \frac{22}{7} \times 7^{2} \times 3
\end{aligned}
$$

$\therefore \quad$ Cost of milk to fill this vessel at the rate of Rs. 20 per litre

$$
\begin{aligned}
& =2.926 \times 20 \\
& =58.520 \\
& =\text { Rs. } 58.520
\end{aligned}
$$

Volume of the hemisphere $=\frac{2}{3} \pi r^{3}$

$$
1 / 2
$$

4
OR

Volume of the cone $\quad=\frac{1}{3} \pi r^{2} h$

$$
1 / 2
$$

Hemisphere

Cone

$$
r=14 \mathrm{~cm} \quad h=7 \mathrm{~cm}
$$

Volume of hemisphere = Volume of cone

$$
\begin{aligned}
& \frac{2}{3} \pi r^{3}=\frac{1}{3} \pi r^{2} h \\
& 2 \times(14)^{3}=r^{2} \times 7 \\
& r^{2}=\frac{2 \times(14)^{3}}{7} \\
& \quad=\frac{2 \times 14 \times 14 \times 14}{7} \\
& r^{2}=196 \times 4 \\
& r^{2}=784
\end{aligned}
$$

$$
1 / 2
$$

PF(C)-606

Qn. Nos.	Value Points	Marks allotted

50. Prove that "the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides".

Ans. :

Data :
$\triangle A B C \sim \triangle P Q R$
To prove : $\quad \frac{\text { Area of } \triangle A B C}{\text { Area of } \triangle P Q R}=\frac{B C^{2}}{Q R^{2}}$
Construction: Draw $A M \perp B C$ and $P N \perp Q R$
Proof:

$$
\text { In } \triangle A M B \text { and } \triangle P Q N
$$

$$
\begin{aligned}
& \lfloor A B M \\
& \begin{array}{l}
\angle P Q N
\end{array} \quad \text { (Data) } \\
& \lfloor A M B \\
& =\lfloor P N Q \\
&
\end{aligned}=90^{\circ} \quad \text { (Construction) }
$$

$\triangle A M B \sim \triangle P Q N$
$\therefore \quad \frac{A M}{P N}=\frac{A B}{P Q}$
A.A criteria

But $\quad \frac{B C}{Q R}=\frac{A B}{P Q} \quad$ Data
$\therefore \quad \frac{A B}{P Q}=\frac{B C}{Q R}$

PF(C)-606

Qn. Nos.	Value Points	Marks allotted
	$\frac{\text { Area of } \triangle A B C}{\text { Area of } \triangle P Q R}$ $=\frac{\frac{1}{2} \times B C \times A M}{\frac{1}{2} \times Q R \times P N}$ $=\frac{B C}{Q R} \times \frac{A M}{P N}$ $=\frac{B C}{Q R} \times \frac{B C}{Q R}, \quad\left[\frac{A M}{P N}=\frac{B C}{Q R}\right]$	
	$=\frac{B C^{2}}{Q R^{2}}$	
$\therefore \quad \frac{\text { Area of } \triangle A B C}{\text { Area of } \triangle P Q R}=\frac{B C^{2}}{Q R^{2}}$	$1 / 2$	4

Alternate method:

Data : \quad We are given two triangles $A B C$ and $P Q R$ such that

$$
\triangle A B C \sim \triangle P Q R \quad 1 / 2
$$

We need to prove that

$$
\frac{\operatorname{ar}(A B C)}{\operatorname{ar}(P Q R)}=\left(\frac{A B}{P Q}\right)^{2}=\left(\frac{B C}{Q R}\right)^{2}=\left(\frac{C A}{R P}\right)^{2} \quad 1 / 2
$$

For finding areas of two triangles
Draw altitudes $A M$ and $P N$ of the triangles
Now $\frac{\operatorname{ar}(A B C)}{\operatorname{ar}(P Q R)}=\frac{\frac{1}{2} B C \times A M}{\frac{1}{2} Q R \times P N}$

$$
\begin{equation*}
=\frac{B C}{Q R} \times \frac{A M}{P N} \tag{i}
\end{equation*}
$$

Now in $\triangle A B M$ and $\triangle P Q N$

Value Points
$\left\lfloor\begin{array}{l}B \\ =\lfloor Q \\ \lfloor M\end{array} \quad\left(\begin{array}{ll}\text { As } \triangle A B C \sim \triangle P Q R) \\ & \left(\text { each is of } 90^{\circ}\right)\end{array}\right.\right.$
$\triangle A B M \sim \triangle P Q N$
(A. A. criterion)

Therefore

$$
\begin{equation*}
\frac{A M}{P N}=\frac{A B}{P Q} \tag{ii}
\end{equation*}
$$

Also $\quad \triangle A B C \sim \triangle P Q R \quad$ (given)

$$
\begin{equation*}
\frac{A B}{P Q}=\frac{B C}{Q R}=\frac{C A}{R P} \tag{iii}
\end{equation*}
$$

Therefore

$$
\frac{\operatorname{ar}(A B C)}{\operatorname{ar}(P Q R)}=\frac{A B}{P Q} \times \frac{A M}{P N}
$$

From (i) and (iii)
$=\frac{A B}{P Q} \times \frac{A B}{P Q} \quad$ (from (i) and (iii))

$$
=\left(\frac{A B}{P Q}\right)^{2}
$$

Now using (iii) we get

$$
\frac{\operatorname{ar}(A B C)}{\operatorname{ar}(P Q R)}=\left(\frac{A B}{P Q}\right)^{2}=\left(\frac{B C}{Q R}\right)^{2}=\left(\frac{C A}{R P}\right)^{2}
$$

