9. Sequences \& Series

Sequence:

Let X be a set of numbers and $f: N \rightarrow X$ be a function, then the ordered set $\{f(1), f(2), \ldots, f(n)\}$ is called a finite sequence where as $\{f(1), f(2), \ldots\}$ is called an infinite sequence.

If $X=R$, then the sequence is called a real sequence and if $X=C$, then the sequence is called a complex sequence.

Thus, the sequence is an arrangement of numbers in a definite order.

Note1: The numbers $f(1), f(2), \ldots \ldots, f(n)$ are called first term, second term, $3^{\text {rd }}$ term, $\ldots . ., \mathrm{n}^{\text {th }}$ term of the sequence. The nth term of a sequence is also denoted by $T_{n}, t_{n}, a_{n}, a(n), u_{n}$, etc.

Note2: The sequence $\{f(1), f(2), \ldots \ldots, f(n)\}$ are generally denoted as $f(1), f(2), \ldots \ldots, f(n)$.

Progression: A sequence is said to be a progression if its terms increases (decreases) numerically
E.g.: $\quad 4,9,14,19, \ldots$

$$
8,4,0,-4, \ldots
$$

Series: If $\left\{a_{n}\right\}$ is a sequence, then the expression $a_{1}+a_{2}+a_{3}+\ldots \ldots+a_{n}$ is called the series corresponding to the sequence $\left\{a_{n}\right\}$. Or in other words, sum of all terms of a sequence is called a series.

Depending on the sequence, a series is called finite or infinte.
E.g.: i. $1+2+3+\ldots \ldots+100$
ii. $2+6+18+\ldots \ldots$
iii. $5+10+15+$ \qquad
iv. $\frac{1}{3}+\frac{1}{6}+\frac{1}{9}+\ldots \ldots$.

Arithmetic Progression [A.P]

A sequence in which, its terms after the $1^{\text {st }}$ term is obtained by adding a fixed number to its just preceding terms. Such sequence is called Arithmetic Progression. The fixed number is called common difference and is denoted by 'd'.
E.g: $\quad-4,-2,0,2,4, \ldots$

$$
6,10,14, \ldots
$$

Thus $d=$ any term-the term just preceding it

$$
\text { i.e., } \quad \mathbf{d}=\mathbf{a}_{\mathbf{n}+1}-\mathbf{a}_{\mathbf{n}}
$$

Note:

1. If in a sequence, the terms are alternatively + ve and - ve, then it cannot be an A.P.
2. The standard form of an A.P is a, a+d, a+2d, $\mathbf{a}+3 \mathbf{d}, \ldots \ldots$.
3. If a, b, c be three consecutive terms of an A.P then $2^{\text {nd }}$ term $-1^{\text {st }}$ term $=3^{\text {rd }}$ term $-2^{\text {nd }}$ term. i.e., $\mathrm{b}-\mathrm{a}$ $=\mathrm{c}-\mathrm{b}$.
4. If three numbers $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in A.P. then $\mathbf{2 b}=\mathbf{a}+\mathbf{c}$

$\mathbf{n}^{\text {th }}$ term of an A.P. $\left[a_{n}\right]$

The first term of the sequence is denoted by ' a ', common difference by ' d ', then $\mathrm{n}^{\text {th }}$ term is defined as $\mathbf{a}_{\mathrm{n}}=\mathbf{a}+(\mathbf{n}-1) \mathbf{d}$

Number of terms of an A.P.[n]

Let ' n ' be the number of terms of an A.P, then $\mathrm{n}=\frac{\mathbf{a}_{\mathrm{n}}-\mathbf{a}}{\mathrm{d}}+\mathbf{1}$
Where a $1^{\text {st }}$ term
$a_{n} \quad$ last term
d Common difference

Sum of ' \mathbf{n} ' terms of an A.P.[S_{n}]

Let ' a ' be the $1^{\text {st }}$ term, ' d ' the common difference, ' n ' the number of terms and ' a_{n} ' be the last term then sum of n terms is

$$
\begin{aligned}
& S_{n}=\frac{\mathbf{n}}{2}[2 a+(n-1) d] \\
& \text { (or) } \quad \mathbf{S}_{\mathbf{n}}=\frac{\mathbf{n}}{\mathbf{2}}\left[\mathbf{a}+\mathbf{a}_{\mathbf{n}}\right]
\end{aligned}
$$

Arithmetic mean between two quantities.

Let ' x ' be the arithmetic mean between two quantities ' a ' and ' b ' then $\mathbf{x}=\frac{\mathbf{a}+\mathbf{b}}{\mathbf{2}}$

Notes:

1. If each term of a given A.P be increased, decreased, multiplied or divided by the same non-zero quantity then the resulting series thus obtained will also be in A.P.
2. No. of Terms A.P.

3

$$
\mathbf{a}-\mathbf{d}, \mathbf{a}, \mathbf{a}+\mathbf{d}
$$

4
$\mathbf{a}-3 d, a-d, a+d, a+3 d$
5

$$
\mathbf{a}-\mathbf{d}, \mathbf{a}-\mathbf{d}, \mathbf{a}, \mathbf{a}+\mathbf{d}, \mathbf{a}+2 \mathbf{d}
$$

6

$$
\mathbf{a}-5 \mathrm{~d}, \mathbf{a}-3 \mathrm{~d}, \mathbf{a}-\mathbf{d}, \mathbf{a}+\mathbf{d}, \mathbf{a}+3 \mathrm{~d}, \mathbf{a}+5 \mathrm{~d}
$$

3. In an A.P., the sum of terms equidistant from the beginning and end is constant and equal to the sum of $1^{\text {st }}$ and last terms.
4. Any term except the $1^{\text {st }}$ term of an A.P. is equal to half the sum of terms which are equidistant from it.
i.e., $a_{n}=\frac{1}{2}\left(a_{n-1}+a_{n+1}\right)$
5. $n^{\text {th }}$ term, $\mathbf{T}_{\mathbf{n}}$ or $\mathbf{a}_{\mathbf{n}}=\mathbf{S}_{\mathbf{n}}-\mathbf{S}_{\mathbf{n}-\mathbf{1}} \quad(\mathbf{n} \geq \mathbf{2})$
6. Sum and difference of corresponding terms of two A.Ps will form a series in A.P.
7. If a, b, c are in A.P then
i. $\mathbf{a}+\mathbf{k}, \mathbf{b}+\mathbf{k}, \mathbf{c}+\mathbf{k}$ are in A.P
ii. $\mathbf{a}-\mathbf{k}, \mathbf{b}-\mathbf{k}, \mathbf{c}-\mathbf{k}$ are in A.P
iii. ak, bk, ck are in A.P
iv. $\quad \frac{\mathbf{a}}{\mathbf{k}}, \frac{\mathbf{b}}{\mathbf{k}}, \frac{\mathbf{c}}{\mathbf{k}}$ are in A.P $(\mathrm{k} \neq 0)$

Geometrical Progression

A finite or infinite sequence is said to be a G.P. if its terms after the first term is obtained by multiplying a fixed number to its just preceding terms. The fixed number is called common ratio (r).

Thus commonratio $=\frac{\text { anyterm }}{\text { term just precedingit }}$

$$
\text { i.e., } \mathbf{r}=\frac{\mathbf{a}_{\mathbf{n}}}{\mathbf{a}_{\mathbf{n}-\mathbf{1}}}
$$

Standard form: $\mathrm{a}, \mathrm{ar}, \mathrm{ar}^{2}, \mathrm{ar}^{3}, \ldots \ldots . \mathrm{ar}^{\mathrm{n}-1}$.
$\mathbf{n}^{\text {th }}$ term of a G.P. [$\left.a_{n}\right]$
If a,r be the first term and common ratio of a G.P., then $\mathbf{a}_{\mathbf{n}}=\mathbf{a r}{ }^{\mathbf{n}-\mathbf{1}}$.
Note: If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in G.P, then
i. $\mathrm{ka}, \mathrm{kb}, \mathrm{kc}$ are in G.P
ii. $\frac{a}{k}, \frac{b}{k}, \frac{c}{k}$ are in G.P $(\mathrm{k} \neq 0)$
iii. $\quad b^{2}=a c$

If the product of n numbers are in G.P. is given,

No. of terms

G.P.

$$
\begin{array}{ll}
3 & \frac{\mathbf{a}}{\mathbf{r}}, \mathbf{a}, \mathbf{a r} \quad(o r) \mathbf{a}, \mathbf{a r}, \mathbf{a r}^{2} \\
4 & \frac{\mathbf{a}}{\mathbf{r}^{3}}, \frac{\mathbf{a}}{\mathbf{r}}, \mathbf{a r}^{2}, \mathbf{a r}^{3} \\
5 & \frac{\mathbf{a}}{\mathbf{r}^{2}}, \frac{\mathbf{a}}{\mathbf{r}}, \mathbf{a}, \mathbf{a r}, \mathbf{a r}^{2} \\
6 & \frac{\mathbf{a}}{\mathbf{r}^{5}}, \frac{\mathbf{a}}{\mathbf{r}^{3}}, \frac{\mathbf{a}}{\mathbf{r}}, \mathbf{a r}^{2}, \mathbf{a r}^{3}, \mathbf{a r}^{5}
\end{array}
$$

Sum of \mathbf{n} terms of a G.P [S_{n}]

If a, r be the first and common ratio of a G.P then

$$
S_{n}=\frac{a\left(r^{n}-1\right)}{r-1}, \text { if } r>1 \text { and } S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}, \text { if } r<1
$$

Geometric mean between two numbers.
Let x is the GM between two numbers a and b . Then
$\mathbf{x}=\sqrt{\mathbf{a b}}$

Sum to infinity of a G.P.

If a be the first term and r the common ratio, then sum of n terms of an infinite series is $\mathbf{S}_{\infty}=\frac{\mathbf{a}}{\mathbf{1}-\mathbf{r}},|\mathbf{r}|<\mathbf{1}$.

Harmonic Progression (For JEE)
A sequence of non-zero numbers whose reciprocals form an arithmetic progression is called a Harmonic Progression.

If $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \ldots \ldots \ldots, \mathbf{a}_{\mathbf{n}}, \ldots \ldots$. is called a harmonic progression, then $\frac{\mathbf{1}}{\mathbf{a}_{1}}, \frac{\mathbf{1}}{\mathbf{a}_{2}}, \frac{\mathbf{1}}{\mathbf{a}_{3}} \ldots \ldots$. are in A.P.

Note: All problems given in H.P can easily be converted into an A.P and then solve.

Harmonic Mean: Let x be the H.M. between two quantities a and b . Then $\mathrm{a}, \mathrm{x}, \mathrm{b}$ are in H.P.
i.e., $\frac{1}{\mathrm{a}}, \frac{1}{\mathrm{x}}, \frac{1}{\mathrm{~b}}$ are in A.P.
$\therefore \frac{1}{\mathrm{x}}-\frac{1}{\mathrm{a}}=\frac{1}{\mathrm{~b}}-\frac{1}{\mathrm{x}} \Rightarrow \frac{1}{\mathrm{x}}+\frac{1}{\mathrm{x}}=\frac{1}{\mathrm{a}}+\frac{1}{\mathrm{~b}}$
$\frac{2}{\mathrm{x}}=\frac{1}{\mathrm{a}}+\frac{1}{\mathrm{~b}} \Rightarrow \frac{2}{\mathrm{x}}=\frac{\mathrm{a}+\mathrm{b}}{\mathrm{ab}} \Rightarrow \frac{\mathrm{x}}{2}=\frac{\mathrm{ab}}{\mathrm{a}+\mathrm{b}} \Rightarrow \mathrm{x}=\frac{\mathbf{2 a b}}{\mathrm{a}+\mathbf{b}}$
Note1: If A, G and H are the arithmetic, geometric and harmonic means between two positive real numbers then
$\mathrm{A}, \mathrm{G}, \mathrm{H}$ form a geometric progression.
By definition, $\mathrm{A}=\frac{\mathbf{a}+\mathbf{b}}{\mathbf{2}}, \mathrm{G}=\sqrt{\mathbf{a b}}, \mathrm{H}=\frac{\mathbf{2 a b}}{\mathbf{a}+\mathbf{b}}$
A. $H=\frac{\mathbf{a}+\mathbf{b}}{\mathbf{2}} \cdot \frac{\mathbf{2 a b}}{\mathbf{a}+\mathbf{b}}=\mathrm{ab}=\mathrm{G}^{2}$
$\therefore \mathrm{A}, \mathrm{G}, \mathrm{H}$ are in H.P.
Note2: Three nos. a,b,c are in A.P., G.P. or in H.P. then $\frac{\mathbf{a}-\mathbf{b}}{\mathbf{b}-\mathbf{c}}=\frac{\mathbf{a}}{\mathbf{a}}, \frac{\mathbf{a}}{\mathbf{b}}$ or $\frac{\mathbf{a}}{\mathbf{c}}$ respectively.

Arithmetic-Geometric Progression [AGP]

(For JEE only)
A sequence in which each term is the product of an AP and a GP is called an AGP.
E.g.: $\quad 1+3 x+5 x^{2}+7 x^{3}+\ldots$

$$
1-\frac{5}{2}+\frac{9}{2^{2}}-\frac{13}{2^{3}}+\ldots
$$

Standard Form

$a,(a+d) r,(a+2 d) r^{2}, \ldots[a+(n-1) d] r^{n-1}$
Where a first term
d common difference
r common ratio
$n^{\text {th }}$ term of an AGP: $a_{n}=[a+(n-1) d] r^{n-1}$

Sum of \mathbf{n} terms of an AGP

$S_{n}=\frac{a}{1-r}+\frac{d r\left(1-r^{n-1}\right)}{(1-r)^{2}}-\frac{[a+(n-1) d] r^{n}}{(1-r)}$

Sum to infinity of an AGP, $S_{\infty}=\frac{a}{1-r}+\frac{d r}{(1-r)^{2}}$

Sum to in terms of Special series:

Sum of first \mathbf{n} natural numbers $1+2+3+\ldots+n$ $S_{n}=\frac{n(n+1)}{2}$

Sum of the squares of the first n natural numbers

$$
1^{2}+2^{2}+3^{2}+\ldots+n^{2} \text { is } S_{n}=\frac{n(n+1)(2 n+1)}{6}
$$

Sum of the cubes of the first n natural numbers
$1^{3}+2^{3}+3^{3}+\ldots+n^{3}$ is $S_{n}=\left[\frac{n(n+1)}{2}\right]^{2}$
Note: From the above results we have Sum of the cubes of $1^{\text {st }} n$ natural numbers is equal to square of the sum of the first n natural numbers.

