Sample Questions

Question 1:

Find the centre and the radius of the circle

$$x^2 + y^2 + 10x + 12y - 3 = 0$$

Solution:

The given equation is

$$(x^{2} + 10x) + (y^{2} + 12y) = 3$$

$$(x^{2} + 10x + 25) + (y^{2} + 12y + 36) = 3 + 25 + 36$$
i.e.
$$(x + 5)^{2} + (y + 6)^{2} = 64$$
i.e.
$$\{x - (-5)\}^{2} + \{y - (-6)\}^{2} = 8^{2}$$

 \therefore Centre(-5,-6), Radius = 8

Question 2:

Find the equation of the parabola with vertex at (0,0) and focus at (0,2)

Solution:

$$a = 2$$

 $x^2 = 4(2)y$,
i.e., $x^2 = 8y$.
Question 3:

Find the equation of the parabola if the curve is open rightward, vertex is (2,1) and passing through point (6, 5).

Solution:

The equation of the parabola is,

$$(y-k)^2 = 4a(x-h)$$

The vertex V(h, k) is (2, 1)

$$(y-1)^2 = 4a(x-2)$$

But it passes through (6, 5)

$$4^2 = 4a (6-2)$$

$$a = 1$$

 \therefore The required equation is $(y-1)^2 = 4(x-2)$

Question 4:

Find the equation of the parabola if the curve is open upward, vertex is (-1, -2) and the length of the latus rectum is 4. Solution:

The equation of the parabola is,

$$(x-h)^2 = 4a(y-k)$$

Length of the latus rectum = 4a = 4

$$a = 1$$

The vertex V(h, k) is (-1, -2)

 \therefore The required equation is $(x+1)^2 = 4(y+2)$

Question 5:

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the latus rectum of the ellipse

$$\frac{x^2}{25} + \frac{y^2}{16} = 1$$

Solution:

$$\frac{x^2}{25} + \frac{y^2}{16} = 1$$

Comparing the given equation with $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, we get

$$a = 5, b = 4$$

$$c = \sqrt{a^2 - b^2} = \sqrt{5^2 - 4^2} = 3$$

٠.

The coordinates of the foci are (-3,0),(3,0),

Vertices are (-5,0) and (5,0).

Length of the major axis = 10 units

Length of the minor axis = 6 units and the

Eccentricity =
$$\frac{3}{5}$$

Latus rectum =
$$\frac{2b^2}{a} = \frac{32}{5}$$

Question 7:

Find the equation of the ellipse, whose length of the major axis is 20 and foci are $(0, \pm 6)$

Solution:

Equation of the ellipse is $\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$

$$a = \frac{20}{2} = 10$$

$$b = \sqrt{a^2 - c^2} = \sqrt{10^2 - 6^2}$$

$$= \sqrt{100 - 36} = 64$$

Therefore, the equation of the ellipse is $\frac{x^2}{64} + \frac{y^2}{100} = 1$

Question 8:

Find the equation of the ellipse whose vertices are $(\pm 6,0)$ and foci are $(\pm 4,0)$

Solution:

Equation of the ellipse is $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

$$a = 6, c = 4$$

$$a^2 + b^2 = c^2$$

$$b = \sqrt{a^2 - c^2} = \sqrt{6^2 - 4^2} = \sqrt{20}$$

Therefore, the equation of the ellipse is $\frac{x^2}{36} + \frac{y^2}{20} = 1$

Question 6:

Find the coordinates of the foci, the vertices, the eccentricity and the latus rectum of the hyperbola.

$$25x^2 - 9y^2 = 225$$

Solution:

$$9y^2 - 4x^2 = 36$$

$$\frac{9y^2}{36} - \frac{4x^2}{36} = \frac{36}{36}$$

$$\frac{y^2}{4} - \frac{x^2}{9} = 1$$

Comparing the given equation with $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, we get

$$a = 2, b = 3$$

$$c = \sqrt{a^2 + b^2} = \sqrt{4 + 9} = \sqrt{13}$$

٠.

The coordinates of the foci are $(0, -\sqrt{13})$, $(0, \sqrt{13})$, Vertices are (0, +2) and (0, -2).

Eccentricity =
$$\frac{3}{5}$$

Latus rectum =
$$\frac{2 \times 3^2}{2} = 9$$

Question 9:

Find the equation of the hyperbola where foci are $(0,\pm 12)$ and the length of the latus rectum is 36.

Solution:

$$c = 12$$

$$\frac{2b^{2}}{a} = 36$$

$$b^{2} = 18a$$

$$c^{2} = a^{2} + b^{2}$$

$$12^{2} = a^{2} + 18a$$

$$a^{2} + 18a - 144 = 0$$

$$a = -24, 6$$

we take a = 6, $b^2 = 108$

Therefore, the equation of the required hyperbola is

$$\frac{y^2}{36} - \frac{x^2}{108} = 1$$
 or $3y^2 - x^2 = 108$

