# CCE RF REVISED



ಕರ್ನಾಟಕ ಪ್ರೌಢ ಶಿಕ್ಷಣ ಪರೀಕ್ಷಾ ಮಂಡಳಿ, ಮಲ್ಲೇಶ್ವರಂ, ಬೆಂಗಳೂರು – 560 003

KARNATAKA SECONDARY EDUCATION EXAMINATION BOARD, MALLESWARAM, BANGALORE - 560 003

ಎಸ್.ಎಸ್.ಎಲ್.ಸಿ. ಪರೀಕ್ಷೆ, ಮಾರ್ಚ್ / ಏಪ್ರಿಲ್ – 2019

S. S. L. C. EXAMINATION, MARCH/APRIL, 2019

ಮಾದರಿ ಉತ್ತರಗಳು

### **MODEL ANSWERS**

ದಿನಾಂಕ : 02. 04. 2019 ]

Date : 02. 04. 2019 ]

ಸಂಕೇತ ಸಂಖ್ಯೆ : 83-E (Phy)

CODE NO. : 83-E (Phy)

ವಿಷಯ : ವಿಜ್ಞಾನ

Subject : SCIENCE

( ಭೌತಶಾಸ್ತ್ರ / Physics )

( ಹೊಸ ಪಠ್ಯಕ್ರಮ / New Syllabus )

( ಶಾಲಾ ಅಭ್ಯರ್ಥಿ / Regular Fresh )

(ಇಂಗ್ಲಿಷ್ ಭಾಷಾಂತರ / English Version )

[ ಗರಿಷ್ಠ ಅಂಕಗಳು : 80

#### [ Max. Marks : 80

| Qn.<br>Nos. | Value Points                                                            | Total    |
|-------------|-------------------------------------------------------------------------|----------|
| 1.          | The change that occurs in the eye to see the distant objects clearly is |          |
|             | (A) focal length of the eye lens decreases                              |          |
|             | (B) curvature of the eye lens increases                                 |          |
|             | (C) focal length of the eye lens increases                              |          |
|             | (D) ciliary muscles of the eye contract                                 |          |
|             | Ans. :                                                                  |          |
|             | (C) — focal length of the eye lens increases                            | 1        |
|             | <b>RF(A)-1024 (PHY)</b>                                                 | urn over |

| Qn.<br>Nos. | Value Points                                                                                         | Total |
|-------------|------------------------------------------------------------------------------------------------------|-------|
| 4.          | The resistance of a conductor is 27 $\Omega$ . If it is cut into three equal parts an                | d     |
|             | connected in parallel, then its total resistance is                                                  |       |
|             | (A) $6 \Omega$ (B) $3 \Omega$                                                                        |       |
|             | (C) $9 \Omega$ (D) $27 \Omega$                                                                       |       |
|             | Ans. :                                                                                               |       |
|             | (B) — 3 Ω                                                                                            | 1     |
| 7.          | To obtain a diminished image of an object from a concave mirror, position of<br>the object should be | of    |
|             | ( $F$ = principal focus, $C$ = centre of curvature, $P$ = pole)                                      |       |
|             | (A) between $C$ and $F$ (B) beyond $C$                                                               |       |
|             | (C) between $P$ and $F$ (D) at $F$                                                                   |       |
|             | Ans. :                                                                                               |       |
|             | (B) — beyond $C$                                                                                     | 1     |
| 14.         | Convex mirror is commonly used as rear-view mirror in vehicles. Why ?                                |       |
|             | Ans. :                                                                                               |       |
|             | * They always give an erect diminished image. $\frac{1}{2}$                                          |       |
|             | * Also they have a wider field of view as they are curved outwards. $\frac{1}{2}$                    | 1     |
| 16.         | Observe the given figure. Name the eye defect indicated in the figure an                             | d     |
|             | also mention the lens used to correct this defect.                                                   |       |
|             |                                                                                                      |       |
|             | Ans. :                                                                                               |       |
|             | * Myopia $\frac{1}{2}$                                                                               |       |
|             | ★ Concave lens $\frac{1}{2}$                                                                         |       |

83-E (Phy)



83-E (Phy)



83-E (Phy)

| Qn.<br>Ios. | Value Points                                                                                                             | Tota    |
|-------------|--------------------------------------------------------------------------------------------------------------------------|---------|
|             | It is advantageous to connect electric devices in parallel instead of                                                    |         |
|             | connecting them in series. Why ?                                                                                         |         |
|             | OR                                                                                                                       |         |
|             | According to Joule's law of heating, mention the factors on which heat                                                   |         |
|             | produced in a resistor depends. According to this law write the formula                                                  |         |
|             | used to calculate the heat produced.                                                                                     |         |
|             | Ans. :                                                                                                                   |         |
|             | * The appliances connected in series need currents of widely different values to operate properly. $\frac{1}{2}$         |         |
|             | * In a series circuit, if one component fails, the circuit is broken and none of the components work. $\frac{1}{2}$      |         |
|             | ★ But in a parallel circuit current divides through the electrical gadgets. $\frac{1}{2}$                                |         |
|             | $\star$ This is helpful particularly when each gadget has different resistance                                           |         |
|             | and requires different current to operate properly / Each electrical appliance can be operated separately. $\frac{1}{2}$ | 2       |
|             | OR                                                                                                                       |         |
|             | Heat produced in a resistor is,                                                                                          |         |
|             | (i) directly proportional to the square of current for a given resistance $\frac{1}{2}$                                  |         |
|             | (ii) directly proportional to resistance for a given current, and $\frac{1}{2}$                                          |         |
|             | (iii) directly proportional to the time for which the current flows through the resistor $\frac{1}{2}$                   |         |
|             | (iv) $H = I^2 Rt$ $\frac{1}{2}$                                                                                          | 2       |
| I           | <b>RF(A)-1024 (PHY)</b>                                                                                                  | urn ove |

| Qn.<br>Nos. | Value Points                                                                                          | Tota |
|-------------|-------------------------------------------------------------------------------------------------------|------|
| 28.         | The focal length of a concave lens is 30 cm. At what distance should the                              | 2    |
|             | object be placed from the lens so that it forms an image at 20 cm from the                            | è    |
|             | lens ?                                                                                                |      |
|             | Ans. :                                                                                                |      |
|             | $\frac{1}{v} - \frac{1}{u} = \frac{1}{f}$ or, $\frac{1}{u} = \frac{1}{v} - \frac{1}{f}$ $\frac{1}{2}$ |      |
|             | $\frac{1}{u} = \frac{1}{-20} - \frac{1}{(-30)} = -\frac{1}{20} + \frac{1}{30}$ $\frac{1}{2}$          |      |
|             | $\frac{1}{u} = \frac{-3+2}{60} \qquad \qquad \frac{1}{2}$                                             |      |
|             | $\frac{1}{u} = \frac{1}{-60}$ or $u = -60$ cm $\frac{1}{2}$                                           | 2    |
| 31.         | An electric refrigerator rated 400 W is used for 8 hours a day. An electric                           |      |
|             | iron box rated 750 W is used for 2 hours a day. Calculate the cost of using                           |      |
|             | these appliances for 30 days, if the cost of 1 kWh is Rs. 3/                                          |      |
|             | Ans. :                                                                                                |      |
|             | The total energy consumed by the refrigerator in 30 days                                              |      |
|             | = $400 \times 8 \times 30$ = 96000 Wh = 96 kWh $\frac{1}{2}$                                          |      |
|             | The total energy consumed by the iron box in 30 days                                                  |      |
|             | = $750 \times 2 \times 30$ = 45000 Wh = 45 kWh $\frac{1}{2}$                                          |      |
|             | The total energy consumed by the refrigerator and iron box is                                         |      |
|             | = 96 kWh + 45 kWh = 141 kWh $\frac{1}{2}$                                                             |      |
|             | The sum of bill amount for 141 kWh at rate of Rs. 3 per 1 kWh is                                      |      |
|             | = 141 × 3                                                                                             |      |
|             | = Rs. 423. $\frac{1}{2}$                                                                              | 2    |

| Qn.<br>Nos. | Value Points                                                                    | Total |
|-------------|---------------------------------------------------------------------------------|-------|
| 34.         | What is dispersion of light ? Mention the colour that bends the least and       |       |
|             | the colour that bends the most when light undergoes dispersion through a        |       |
|             | prism.                                                                          |       |
|             | OR                                                                              |       |
|             |                                                                                 |       |
|             | Mention any four phenomena that can be observed due to atmospheric              |       |
|             | refraction of light on the earth.                                               |       |
|             | Ans. :                                                                          |       |
|             | The splitting of light into its component colours is called dispersion 1        |       |
|             | * The red colour bends the least $\frac{1}{2}$                                  |       |
|             | * The violet colour bends the most. $\frac{1}{2}$                               |       |
|             | 2                                                                               | 2     |
|             | OR                                                                              |       |
|             | $\star$ The sun is visible to us two minutes before the actual sunrise.         |       |
|             | $\star$ The sun is visible to us two minutes after the actual sunset also.      |       |
|             | $\star$ The apparent position of the star is slightly different from its actual |       |
|             | position.                                                                       |       |
|             | ★ Twinkling of star                                                             |       |
|             | ★ Formation of rainbow                                                          |       |
|             | $\star$ The apparent random wavering or flickering of objects seen through a    |       |
|             | turbulent stream of hot air rising above a fire or a radiator.                  |       |
|             |                                                                                 |       |

## RF(A)-1024 (PHY)

[ Turn over



83-E (Phy)

| Qn.<br>Nos. |      | Value Points                                                        |                       | Total         |
|-------------|------|---------------------------------------------------------------------|-----------------------|---------------|
|             | (i)  | Write the advantages of solar cells.                                |                       |               |
|             | (ii) | Write any two hazards of nuclear power generation.                  |                       |               |
|             | Ans  | .:                                                                  |                       |               |
|             | (i)  | * Methane / $CH_4$ .                                                | $\frac{1}{2}$         |               |
|             |      | $\star$ Leaves no residue like ash.                                 | $\frac{1}{2}$         |               |
|             |      | $\star$ It burns without smoke / ecofriendly.                       | $\frac{1}{2}$         |               |
|             |      | $\star$ Its heating capacity is high.                               | $\frac{1}{2}$         |               |
|             | (ii) | ★ Solar water heater                                                | $\frac{1}{2}$         |               |
|             |      | $\star$ Solar cooker.                                               | $\frac{1}{2}$         | 3             |
|             |      | OR                                                                  |                       |               |
|             | (i)  | $\star$ They have no moving parts.                                  | $\frac{1}{2}$         |               |
|             |      | $\star$ Require little maintenance and work quite satisfactorily w  | ithout                |               |
|             |      | the use of any focusing device.                                     | $\frac{1}{2}$         |               |
|             |      | $\star$ They can be set up in remote and inaccessible hamlets or    | $\frac{1}{2}$         |               |
|             |      | $\star$ Very sparsely inhabited areas in which laying of a          | power                 |               |
|             |      | transmission line may be expensive and not commercially             | viable. $\frac{1}{2}$ |               |
|             | (ii) | ★ Improper nuclear waste storage and disposal resu                  | 11 in $\frac{1}{2}$   |               |
|             |      | $\star$ There is a risk of accidental leakage of nuclear radiation. | $\frac{1}{2}$         | 2             |
|             |      | <b>RF(A)-1024 (PHY)</b>                                             |                       | 3<br>1rn over |

| •    |       | Value Points                                              |                             |
|------|-------|-----------------------------------------------------------|-----------------------------|
| (i)  | Ноч   | w does overload and short-circuit occur in an elect       | ric circuit ?               |
|      | Exp   | plain. What is the function of fuse during this situation | ?                           |
| (ii) | Mei   | ntion two properties of magnetic field lines.             |                             |
| An   | ıs. : |                                                           |                             |
| (i)  | *     | Overloading can occur when the live wire and the          | neutral wire                |
|      |       | come into direct contact.                                 |                             |
|      | *     | This occurs when the insulation of wires is damaged       | or there is a               |
|      |       | fault in the appliance / When many electrical ap          | pliances are                |
|      |       | connected to one circuit simultaneously.                  | $\frac{1}{2}$               |
|      | *     | In such a situation, the current in the circuit abrupt    | tly increases               |
|      |       | and short circuit occurs.                                 | $\frac{1}{2}$               |
|      | *     | The joule heating that takes place in the fuse melts      | s it to break               |
|      |       | the electric circuit, and prevents the electric appl      | iances from                 |
|      |       | possible damage.                                          | $\frac{1}{2} + \frac{1}{2}$ |
| (ii) | *     | No two field lines are found to cross each other.         | $\frac{1}{2}$               |
|      | *     | The density of the magnetic field lines are mo            | ore in their                |
|      |       | poles.                                                    | $\frac{1}{2}$               |
|      | *     | The magnetic field lines emerge from north pole an        | nd merge at                 |
|      |       | south pole.                                               | $\frac{1}{2}$               |

| CCE RF |
|--------|
|--------|

| Qn.<br>Nos. | Value Points |                                                                                                         |   |  |
|-------------|--------------|---------------------------------------------------------------------------------------------------------|---|--|
|             | *            | Inside the magnet, the direction of field lines is from its south pole to its north pole. $\frac{1}{2}$ | 4 |  |
|             | *            | Thus the magnetic field lines are closed curves.<br>(Any two) $2 \times \frac{1}{2} = 1$                |   |  |

\_

\_

## RF(A)-1024 (PHY)