PREVIOUS HSE QUESTIONS FROM THE CHAPTER "EQUILIBRIUM"

1. Give the relation between Kp and Kc, for the reaction given below.

 $2\text{NOCI}(g) \stackrel{\longrightarrow}{\longleftarrow} 2\text{NO}(g) + \text{Cl}_2(g)$ (2)

- 2. H_2O and H_2SO_4 can act both as Bronsted acids and bases. For each case give the corresponding conjugate acid and conjugate base. (2)
- 3. The ionization constant of nitrous acid is 4.5 x 10⁻⁴. Calculate the pH of 0.04 M solution of nitrous acid in water. (Hint: HNO₂+ H₂O $\xrightarrow{\sim}$ H₃O⁺ + NO₂⁻; K_a = C α^2) (3) [August 2018]
- 4. Explain the effects of temperature and pressure on the following equilibrium.

2NO₂(g)
$$\stackrel{\sim}{\longleftarrow}$$
 N₂O₄ (g) ΔH = -57.2 kJmol $^{-1}$

- 5. Define buffer solutions and write one example for an acidic buffer. (2)
- The value of equilibrium constant is useful to predict the extent of reaction and the direction of the reaction at a given stage. Explain. (3) [March 2018]

(2)

7. a) Classify the following into Lewis acid and Lewis base. i) H_2O ii) NH_3 iii) $AlCl_3$ iv) H^+ (1)b) Explain the term common ion effect with suitable example. (2)

c) The concentration of H⁺ ion in a soft drink is 2 x 10⁻¹³. Calculate its pH. Identify whether the solution is acidic or basic. (2) [July 2017] a) Classify the following solutions into acidic, basic and neutral **HSSLIVE.IN**

8. a) Classify the following solutions into acidic, basic and neutral.
NaCl, NH₄NO₃, NaCN, NaNO₂
(2)

b) pH of blood remains constant inspite of variety of goods and spices we eat. Give a reason. (1)

- c) The solubility of Mg(OH)₂ at 298K is 1.5×10^{-4} . Calculate the solubility product. (2) [March 2017]
- 9. a) The solubility product of salt is related to its solubility.
 - i) Give the relation between solubility product and solubility of $BaSO_4$. (1)
 - ii) The solubility product of $BaSO_4$ is 1.2×10^{-10} at 298K. Calculate the solubility of $BaSO_4$ at 298K. (2)
 - b) Differentiate between homogeneous and heterogeneous equilibria. (2) [September 2016]
- 10. a) Write the expression for equilibrium constant Kc for the following equilibrium.

 $CuSO_4.5H_2O(s) \stackrel{\longrightarrow}{\leftarrow} CuSO_4.3H_2O(s) + 2 H_2O(g)$ (2)

- b) The solubility product of Al(OH)₃ is 1×10^{-36} . Calculate the solubility of Al(OH)₃. (3)
- 11. a) Explain the concept of Lewis acid and Lewis bases with suitable examples. (3)
 - b) Write the Henderson Hasselbalch equation for an acidic buffer. Calculate the pH of an acidic buffer containing
 - 0.1 M CH₃COOH and 0.5 M CH₃COONa. [Ka for CH₃COOH is 1.8×10^{-6}]. (2) [March 2016]
- 12. Equilibrium constant helps in predicting the direction in which a given reaction will proceed at any stage.
 - a) In which one of the following conditions a chemical reaction Proceeds in the forward direction?

i)
$$Q_c < K_c$$
 ii) $Q_c > K_c$ iii) $Q_c = 1/K_c$ IV) $Q_c = -K_c$ (1)

- b) Write whether the following statement is true or false:"High value of equilibrium constant suggests high concentration of the reactants in the equilibrium mixture". (1)
- c) State the Le-Chatlier's principle. Applying this principle, explain the effect of pressure in the following equilibrium.

 $CO(g) + 3 H_2(g) \rightarrow CH_4(g) + H_2O(g)$ (3) [September 2015]

- 13. a) i) Give the Arrhenius concept about acids and bases. (1)
 - ii) Give one example each for Arrhenius acid and base. (1)
 - b) i) Write the expression for equilibrium constant Kp for the following equilibrium.

EQUILIBRIUM Plus One Chemistry Previous Questions Prepared by ANIL KUMAR K L ,GHSS ASHTAMUDI [Hsslive.in]

 $2NOCI_{(g)} \stackrel{\frown}{\longleftarrow} 2NO_{(g)} + CI_{2(g)}$ (1)

ii) Find the value of Kc for the above equilibrium if the value of Kp is 1.8×10^{-2} atm at 600 K.

 $(R = 0.0821 \text{ Latm } \text{K}^{-1} \text{mol}^{-1})$ (2) [March 2015]

14. Le-Chatlier's principle makes a qualitative prediction about the change in conditions on equilibrium.

- a) State Le-Chatlier's principle. (1)
- b) $N_2(g) + O_2(g) \longrightarrow 2NO(g)$.
 - What is the effect of pressure on the above equilibrium? (2)
- c) The species HCO₃⁻ and HSO₄⁻ can act both as Bronsted acids and bases. Write the corresponding conjugate acid and conjugate base of the above species. (2) [August 2014]
- 15. a) Write an equation for equilibrium constant in terms of concentration (K_c) for the equilibrium reaction given below. $Ag_2O(s) + 2HNO_3(aq) \implies 2 AgNO_3(aq) + H_2O(l)$ (1)
 - b) What are buffer solutions? Give an example for a buffer solution. (2)
- c) The concentration of H^+ ion in a sample of soft drink is 3.8 x 10^{-3} M. Determine its pH. (2) [March 2014] (1)
- 16. a) What is conjugate acid base pair? Illustrate with an example.
 - b) Define the pH scale. The pH of a soft drink is 2.42. Give the nature of the solution. (2)
 - c) An aqueous solution of $CuSO_4$ is acidic while that of Na_2SO_4 is neutral. Explain. (2) [September 2013]
- 17. Equilibrium is possible only in a closed system at a given temperature.
 - a) Write the expression for equilibrium constant, Kc for the reaction
 - $4 \text{ NH}_3(g) + 5 \text{ O}_2(g) \longrightarrow 4 \text{ NO}(g) + 6 \text{ H}_2\text{O}(I)$ (1)
 - b) What happens to the value of the equilibrium constant (Kc) when the above reaction is reversed? (1)
- 18. Weak acids are partially ionized in aqueous solutions.
 - a) The ionization constants of some acids are given below:

Acid	Ionisation constant (Ka)
Formic acid (HCOOH)	1.8 x 10 ⁻⁴
Hypochlorous acid (HClO)	3.0 x 10 ⁻⁸
Nitrous acid (HNO ₂)	4.5 x 10 ⁻⁴
Hydrocyanic acid (HCN)	4.9 x 10 ⁻¹⁰

Arrange the above acids in the increasing order of their acid strength. (1)

- b) Calculate the pH of a 0.01 M acetic acid solution with the degree of ionization 0.045.(2)
- 19. Salts can be classified into different categories on the basis of their solubility.
 - a) Identify the solubility range of sparingly soluble salts from the following: (Between 0.01 M and 0.1 M, less than 0.01 M, greater than 0.1 M). (1)
 - b) Calculate the solubility (S) of CaSO₄ at 298 K, if its solubility product constant (Ksp) at this temperature is 9×10^{-6} . [March 2013] (2)
- 20. a) During a class room discussion one of your friends argues that equilibrium constant is not altered with change in temperature. What is your view towards this argument? Justify. (2)
 - b) Dissociation of CaCO₃ in a closed vessel is given as CaCO₃(s) \longrightarrow CaO(s) + CO₂(g)
 - i) Write an expression for Kc. (1)
 - ii) Explain the effect of increase in pressure on the above reaction. Name the principle behind this. (2)

[September 2012]

(1)

🛃 HSSLiVE.IN

- 21. Le-Chatlier's principle helps to explain the effect of change in conditions on equilibrium. Discuss the effect of pressure in the following equilibrium on the basis of Le-Chatlier's principle: $CO(g) + 3 H_2(g) \longrightarrow CH_4(g) + H_2O(g)$ (2)
- 22. The behaviour of acids and bases can be explained by using different concepts.
 - a) Select the Lewis acid from the following: (NH₃, OH⁻, BCl₃, Cl⁻)
 - b) What are conjugate acid base pairs? Illustrate using a suitable example. (2)

EQUILIBRIUM Plus One Chemistry Previous Questions Prepared by ANIL KUMAR K L ,GHSS ASHTAMUDI [Hsslive.in]

- 23. The pH of a salt solution depends on the hydrolysis of its ions.
 - a) Out of the following, which can produce an acidic solution in water? (CH₃COONa, NH₄Cl, CH₃COONH₄, NaCl) (1)
 - b) Explain the phenomenon of common ion effect with a suitable example. (2) [March 2012]
- 24. The principal goal of chemical synthesis is to maximize the conversion of reactants into products. Le-Chatlier's principle can be applied to achieve this goal.
 - a) State Le-Chatlier's principle. (1)
 - b) Predict the conditions to be applied to maximize the production of ammonia in the following reaction. $N_2(g) + 3 H_2(g) \longrightarrow 2 NH_3(g); \qquad \Delta H = -92.38 \text{ kJ/mol}$ (3)
 - c) Comment on the effect of increasing pressure in the reaction, $2 \text{ SO}_3(g) \longrightarrow 2 \text{ SO}_2(g) + O_2(g)$ (1) [October 2011]
- 25. Common ion effect is a phenomenon based on Le-Chatlier's principle.
 - a) Illustrate the common ion effect with an example. (2)
 - b) If the concentration of hydrogen ion in a soft drink is 3×10^{-3} M, calculate its pH. (2)
 - c) Identify the Lewis acids from the following: OH^{-} , BCl_{3} , NH_{3} , H^{+} (1) [March 2011]
- 26. Lowry-Bronsted concept of acid and bases is based on the exchange of H^{+} during a reaction.
 - a) Illustrate with an example of the conjugate acid base pair. (1½)
 - b) Explain the Lewis concept of acids and bases. (1½)
 - c) According to Lewis theory, classify the following into acids and bases: H_2O , NH_3 , $AlCl_3$, $OH^-(2)$ [September 2010]
- 27. When some sodium acetate is added to a solution of acetic acid, the concentration of unionized acetic acid increases.
 - a) What is the phenomenon involved? Substantiate. (2)
 - b) Consider the equilibrium, $AgCl(s) \longrightarrow Ag^{+}(aq) + Cl^{-}(aq)$ The solubility of AgCl is 1.06 x 10⁻⁵ mol/L at 298K. Find out its Ksp at this temperature.
 - c) What happens to the value of solubility and solubility product when HCl is passed through AgCl solution? (1)

[March 2010]

(2)

🎎 HSSLiVE.IN

- 28. The aqueous solutions of the ionic compounds NaCl, CH₃COONa and NH₄Cl show different pH.
 - a) Identify the acidic, basic and neutral solutions among these. (2)
 - b) Justify your answer. (3) [March 2009]
- 29. CaCO₃(s) _____ CaO(s) + CO₂(g)
 - a) Write down the expression for Kp. (1)
 - b) What is the relation between Kp and Kc in the above reaction? (1) [June 2008]
- 30. $PCI_5(g) = PCI_3(g) + CI_2(g)$
 - a) What happens to Kp of the above system if more chlorine is added to the system in equilibrium. (1)
 - b) Give the relation between Kp and Kc in the above system. (1) [February 2008]

EQUILIBRIUM Plus One Chemistry Previous Questions Prepared by ANIL KUMAR K L ,GHSS ASHTAMUDI [Hsslive.in]