Chapter-3

Motion in a Straight Line

1. What is meant by **Kinematics**?

Ans: It is the branch of Physics which describes the motion of objects without going in to the causes of motion.

2. What is meant by frame of reference?

Ans: A coordinate system used to specify position of an object along with a clock to measure time constitutes a frame of reference.

Eg: The Cartesian coordinate system along with a clock is a frame of reference.

3. Define motion in **1D**, **2D** and **3D**. Also give examples.

Ans:

One dimensional motion

It is the motion of an object along a straight line. It is also called rectilinear motion or linear motion.

To describe one dimensional motion only one coordinate (x or y or z) is needed.

- Eg: (i) Motion of a train along a straight rail
- (ii) Motion of a freely falling body.

Two Dimensional Motion

It is the motion of an object in a **plane**. To describe two dimensional motion,

two coordinates (x,y or y,z or x,z) are needed.

Eg: (i) A car moving on a plane ground.

- (ii) A boat sailing in a still lake.
- (iii) Motion of planets around the sun.
- (iv) Motion of a simple pendulum.
- (v) Projectile Motion
- (vi) Circular motion

Three dimensional motion

It is the motion of an object in **space**. To describe three dimensional motion, three co-ordinates (x, y and z) are needed.

- **Eg:** (i) Motion of gas molecules
- (ii) A kite flying on a windy day.
- (iii) Motion of an aeroplane.
- **4.** Distinguish between **Distance** and **Displacement.**

Ans:

Distance or Path length

It is the length of the path travelled by the object.

Displacement

It is the **straight line distance** between the initial and final positions of the object, measured in the direction from initial point to the final point.

Note: Both distance and displacement has the same dimension [L] and same unit (meter).

Differences between Distance and Dispalcement

- a) Distance is a scalar quantity but displacement is a vector quantity.
- b) For a moving particle, distance can never be zero or negative while displacement can be zero, positive or negative.
- c) For a moving particle distance can never decrease with time while displacement can.
- **5P**. A particle describes a circle of radius '**r**'. What are the displacement and distance travelled when the particle describes (a) 90° (b) 180° (c) 360°

Ans:

6P. In figure, the point P on a wheel of radius R is in contact with the ground.

What is the displacement of the point, when the wheel rolls a half revolution?

Ans:

Define Uniform motion along a straight line.

Ans: If an object moving on a straight line covers equal distances in equal intervals of time, it said to be in uniform motion along a straight line.

8. Distinguish between average velocity and average speed.

Ans:

Average velocity =
$$\frac{\text{Displacement}}{\text{Total time interval}}$$

$$\overline{\mathbf{v}} = \frac{\mathbf{x}_2 - \mathbf{x}_1}{\mathbf{t}_2 - \mathbf{t}_1} = \frac{\Delta \mathbf{x}}{\Delta \mathbf{t}}$$

Average speed =
$$\frac{\text{Total distance}}{\text{Total time interval}}$$

Speed is a scalar quantity but velocity is a vector.

<u>Note</u>: Both speed and velocity have the same unit (m/s) and dimension [LT⁻¹].

9P. A body moving in a straight line travels with uniform velocity \mathbf{v}_1 for a time \mathbf{t}_1 and with another uniform velocity \mathbf{v}_2 for a time \mathbf{t}_2 . What is the average velocity for the whole journey?

Ans:

10P. A car moves with a speed of 30km/hr for 3 hours and then moves with a speed of 40km/hr for 2 hours. What is the magnitude of average velocity of the car?

Ans:

11P. A body moving in a straight line travels with velocity v_1 for the first half time and with velocity v_2 for the second half time. What is the average velocity for the whole journey?

Ans:

12P. A body moving in a straight line travels the first **half distance** at \mathbf{v}_1 and the second **half distance** at \mathbf{v}_2 . What is the average speed for the whole journey?

Ans:

13P. A car moves along a straight path. It covers the first half of the distance at the rate of 40km/hr and second half at the rate of 60km/hr, find the magnitude of average velocity?

14P. A travels from A to B with a velocity **36km/hr** and returns to A with **72km/hr**. What are the average speed and the average velocity?

Ans:

15. Define **Instantaneous velocity** and **instantaneous speed**.

Ans:

Instantaneous velocity is the limit of the average velocity as the time interval Δt becomes infinitesimally small.

$$\vec{v} = \lim_{\Delta t \to 0} \frac{\vec{\Delta x}}{\Delta t} = \frac{\vec{dx}}{dt}$$

[Instantaneous velocity is simply called velocity]

Note: The velocity at a particular instant is equal to the slope of the tangent drawn on the position time graph at that instant.

<u>Instantaneous speed</u> at an instant is the magnitude of the instantaneous velocity.

<u>Note:</u> Speedometer of an automobile indicates instantaneous speed.

Some important features of uniform motion along a straight line

- (i) Uniform motion is the motion along a straight line with uniform speed.
- (ii) The magnitude of displacement is equal to the actual distance (path length) covered by the object.
- (iii) In uniform motion, the instantaneous velocity is equal to the average velocity at all times.
- **16P.** Look at the graphs (a) to (d) carefully and state, with reasons, which of these cannot possibly represent one-dimensional motion of the particle

Acceleration

17. Define acceleration.

The rate of change of velocity of an object with time is called the acceleration.

Acceleration =
$$\frac{\text{change in velocity}}{\text{time taken}}$$

$$a = \frac{v \cdot u}{t} \quad , u \to \text{initial velocity}$$

 $v \rightarrow final velocity$

S.I unit of acceleration is m/s²

The dimensional formula of acceleration is $[M^0L^1T^{-2}]$.

18. Define **uniform acceleration**. Give an example for uniformly accelerated motion.

Ans: An object is said to be moving with uniform acceleration, if its velocity changes by equal amounts in equal intervals of time.

Eg: Motion of a freely failing body. A freely falling body bas a uniform acceleration of 9.8 m/s²

19. Define average acceleration.

Ans:

Average acceleration

Total change in velocity time taken

$$\overline{a} = \frac{v_2 - v_1}{t_2 - t_1} = \frac{\Delta v}{\Delta t}$$

20. Define instantaneous acceleration. **Ans:** Instantaneous acceleration is

Ans: Instantaneous acceleration is defined as the limit of the average acceleration as the time interval Δt becomes infinitesimally small.

$$a = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \frac{dv}{dt}$$

<u>Note:</u> The acceleration of an object at a particular time is the slope of the velocity- time graph at that instant of time.

Position-Time Graphs

21. Draw the position-time graphs for (i) rest and (ii) uniform motion.

Ans:

i.For an object at rest

The graph is a straight line parallel to the time axis.

ii.For Uniform Motion

The graph is a straight line with positive or negative slope.

(a) Uniform Positive Velocity

[Positive velocity means that the object moves away from the observer.]

(b) Uniform Negative Velocity

[Negative velocity means that the object moves towards the observer.]

22. What are the uses of position-time graphs?

Ans: (i) From the position- time graph, we get the positions of the object at different instants of time.

- (ii) The slope of the position-time graph gives the velocity.
- **23**. Prove that the slope of the position-time graph gives acceleration.

Ans:

$$slope = tan\theta$$

$$= \frac{x_2 - x_1}{t_2 - t_1}$$

$$= \frac{\Delta x}{\Delta t}$$

= v, the velocity

That is the slope of the x-t graph gives the velocity of the object.

24. Draw the position-time graphs for uniform acceleration.

Ans:

(iii) Uniformly accelerated motion

(a) Uniform Positive acceleration

(b) Uniform Negative acceleration (Retardation)

25P. A drunkard walking on a narrow lane takes 3 steps forward 1 step backward, followed by 3 steps forward and 1 step backward, and so on. Each step is 1m long and requires 1s. Plot the x-t graph of his motion. Determine graphically that how long the drunkard takes to fall in a pit 7m away from the start.

Ans:

Velocity-Time Graphs

- **26.** Draw the velocity-time graphs for
 - (i) Uniform motion
 - (ii) Uniform acceleration

Ans:

i.Uniform motion

(Uniform Velocity)

The graph is a straight line parallel to the time axis.

ii. Uniform Acceleration

(a) Uniformly Accelerated Motion

(b) Uniformly Retarded Motion

27. What are the uses of velocity-time graphs?

Ans: (i) Velocity-time graph gives the velocity of the object at different instants of time.

- (ii) The area under v-t graph gives displacement.
- (iii) The slope of v-t graph gives the acceleration of the object.
- **28.** Prove that the area under v-t graph gives the displacement of the object.

Ans:

Area under the graph= $v \times t = S$, the displacement.

29. Prove that the slope of the velocity-time graph gives acceleration.

Ans:

slope =
$$\tan \theta$$

= $\frac{v_2 - v_1}{t_2 - t_1}$
= $\frac{\Delta v}{\Delta t}$
= a, the acceleration

Hence the slope of the velocity-time graph gives the acceleration of the object.

30P. The velocity-time graph coavehicle is as shown.

- (a) What is the type of motion
 - (i) along OA (ii) along AB
 - (iii) along BC
- (b) Find the distance covered by the vehicle during (i) 2.5s (ii) 7s

- (c) Calculate the acceleration for
 - (i) OA (ii) AB and BC
- (d) Draw the acceleration-time graph for the above motion.

31P. Acceleration-time graph of a body starts from rest is as shown below:

- a) What is the use of acceleration time graph?
- b) Draw the velocity-time graph using the above graph.
- c) Find the displacement in the given interval of time from 0 to 3 seconds.

Ans:

32P. The figure shows the x-t graph of a body moving along a straight line.

- a) Draw the velocity- time graph of the body.
- b) From the graph find the displacement in 20 seconds.

Ans:

33P. The table below shows the velocity of a car at different times.

Time(s)	Velocity(m/s)
0	11
1	16
2	21
3	26

4	31
5	36

- a) Plot the a-t graph of this motion. What do you infer from this?
- b) Find the distance travelled by the car in 6 sec.

Ans:

(i) <u>Velocity-Time Relation</u>

36P. Derive the kinematic equations for uniform acceleration from **v-t**

graph.

Ans: v-t Graph

34. What is the equation of motion for uniform velocity?

Ans:

$$S = vt$$

35. Give the kinematic equations for uniform acceleration.

Ans:

$$v = u + at$$

$$S = ut + \frac{1}{2}at^{2}$$

$$v^{2} = u^{2} + 2aS$$

(ii) <u>Dispacement-Time</u> <u>Relation</u>

(iii) <u>Velocity-Displacement</u> <u>Relation</u>

Ans: **39P.** A truck is moving forward at a **37P.** A car moving on a straight constant speed of 20 m/s. The driver highway with a speed of 72km/hr is see, a car in front of him at a distance brought to a stop with in a distance of of 110m stopping suddenly. After a 100m. reaction time he applies the brakes which give the truck an acceleration of (a) What is the retardation of the car? -3 m/s². What will be the maximum (b) How long will it take for the car to allowable reaction time to avoid a stop? collision and what distance the truck would have moved before the brakes Ans: take hold? Ans: **38P**. Show that for a car, starting from rest, moving with constant acceleration for a period of time, the distance travelled in the second half is three times of that in the first half.

- **40P**. When brakes are applied on a moving vehicle, it stops after travelling a distance. This distance is called stopping distance.
 - a) Write an expression for the stopping distance in terms of initial velocity (u) and retardation (a).
 - b) If the initial speed is doubled, keeping the retardation same, by how much will the stopping distance change?

Ans:

Motion under Gravity

- **41.** A ball is thrown vertically up, with an initial velocity u.
- (a) What is the force acting on the ball after being projected?
- **(b)** What is the acceleration of the ball?
- **(c)** What is the velocity of the ball at the highest position?
- **(b)** What is the acceleration of the ball at the highest position?

Ans: (a) F = -mg

- **(b)** a = -g
- (c) v = 0
- (d) a=-g
- **42.** Draw **(a)** x t graph
 - **(b)** v t graph
 - **(c)** a − t graph

for a ball thrown vertically up from the ground and returns to the ground.

Ans: (a) x-t graph

(b) v-t graph

(c) a-t graph

43P. A body is projected up with a velocity **u.**

- (a) What is the time taken by it to reach the highest point?
- (b) Show that, if air resistance is neglected, the time of ascent is equal to the time of descent.

Ans:

44P. A body is dropped from a height 'h'. Calculate

- (a) The time taken by it to reach the ground.
- (b) The velocity on reaching the ground.

Ans:

(a) We have,
$$S = ut + \frac{1}{2}at^2$$

$$\Rightarrow -h = 0 \times t + \frac{1}{2}(-g)t^2$$

$$\Rightarrow -h = -\frac{1}{2}gt^2$$

$$\Rightarrow \frac{1}{2}gt^2 = h$$

$$\Rightarrow t^2 = \frac{2h}{g} \Rightarrow t = \sqrt{\frac{2h}{g}}$$

(b) We have,
$$v^2 = u^2 + 2aS$$

$$\Rightarrow v^2 = 0^2 + 2(-g)(-h)$$

$$\Rightarrow v^2 = 2gh$$

$$\Rightarrow v = \sqrt{2gh}$$

45P. A ball is thrown vertically upwards with a velocity of **20m/s** from the top of a multi-storeyed building. The neight of the point from where the ball is thrown is **25m** from the ground.

- (i) How high will the ball rise?
- (ii) How long it will be before the ball hits the ground?

46P. If 'v' is the velocity and 'a' is the acceleration, give an example of a physical situation for each of the following cases.

- a) $v \neq 0, a = 0$
- b) $v=0, a\neq 0$
- c) v > 0, a < 0

Ans:

- a) A body moving with uniform velocity.
- b) For a ball thrown vertically up, at the highest point of its path the velocity is zero but still it has an acceleration –g.
- c) For a ball thrown vertically up, during its upward motion the velocity is positive and acceleration is negative.
- **47.** Can a body have acceleration without velocity? Justify your answer with a physical situation

Ans: Yes. For a ball thrown vertically up, at the highest point of its pain the velocity is zero but still it has an acceleration –g.

48. A ball is thrown vertically upwards from the top of a tower with velocity 'v'. Another ball is thrown vertically downwards with the same velocity 'v'. Which ball will hit the ground with greater velocity?

Ans:

Relative Velocity

49. Define relative velocity

Ans: It is the velocity of one object with respect to another object.

50. Give the expressions to find relative velocity.

Ans: When the objects are moving along the same direction,

The relative velocity of 'A' with respect to 'B' is $V_{AB} = V_A - V_B$

The relative velocity of 'B' w. r. t 'A' is $V_{BA} = V_{B} - V_{A}$

When the objects are moving in the opposite direction,

Relative velocity =
$$V_A$$
 - $(-V_B)$

$$= V_A + V_B$$

51. Oraw the position-time graphs for relative motion

Ans:

(i) When the relative velocity is zero (i.e., when $V_A = V_B$)

The bodies are always at the same separation.

(ii) When $V_B > V_A$

A and B meet together $t_m \rightarrow time$ of meeting.

(iii) When the objects are moving in the opposite direction.

 $t_m \rightarrow time of meeting$

55P. A police van moving on a highway with a speed of 30km/hr fires a bullet at a thief's car speeding away in the same direction with a speed of **192km/hr**. If the muzzle speed of the bullet is **150m/s**, with what speed does the bullet hit the thief's car?