6. MOLECULAR BASIS OF INHERITANCE

NUCLEIC ACID

- > DNA and RNA (genetic material).
- > DNA in most of the organisms.
- ➤ RNA in some viruses only.

Structure of nucleic acid

a. Nucleoside:

Nucleoside = Nitrogen base + Pentose sugar

b. Nucleotide:

Nucleotide = Nitrogen base + Pentose sugar + Phosphate group

c. Polynucleotide:

Nucleotide + Nucleotide = Dinucleotide

Several nucleotides = Polynucleotide.

Bond present between nucleotides = Phosphodiester bond.

THE DNA DOUBLE HELIX MODEL

- Proposed by Watson and Crick.
- > Contains 2 polynucleotide chains.
- Nitrogen bases ATGC.
- Sugar Deoxyribose.
- > Hydrogen bond Connect Nicrogen bases.

Between A and T – 2 hydrogen bond.

Between G and C – 3 hydrogen bond.

- Phosphodiester bond Connect Sugar and phosphate.
- One chain has 5'-3' polarity.

Other chain has 3'-5' polarity.

- > The two chains coiled in a right handed fashion.
 - Pitch of helix 3.4nm
 - 10 bp in each turn.
 - Distance between base pairs is 0.34nm.

CENTRAL DOGMA

Francia Crick proposed central dogma.

- Eut in certain viruses RNA is the genetic reaterial.
- They form DNA from RNA by reverse transcription. eg: In retro viruses, reverse transcription occurs with the help of enzyme reverse transcriptase.

PACKAGING OF DNA DOUBLE HELIX

Prokarvotes

- No well defined nucleus.
- > DNA is held with some proteins in nucleoid region.

Eukaryotes

> Histones:

- Positively charged proteins.
- Rich in arginine and lysine.
- 5 types-H1, H2A, H2B, H3 H4.

Histone octamer:

- A pair of 4 histones.

Nucleosome:

- DNA (-ve charge) makes two complete turns around the histone octamer (+ve charge) to form a nucleosome.

Nucleosomes

Chromatin is packaged

Chromatin fibres

Coiled and condensed at metaphase stage

Chromosomes

The nucleosome in the chromatin is seen as 'beads-on-string'.

NHC Proteins:

The packaging of chromatin fibres at higher level requires additional set of proteins called Non-histone chromosomal proteins (NHC Proteins).

LENGTH OF DNA

➤ Length of DNA = Total no: of base pairs x Distance

 $= 6.6 \times 10 \text{ bp} \times 0.34 \times 10 \text{ m/bp}$

= 2.2 m (human DNA)

 Dimension of nucleus is 10 approximately. The 2.2m DNA is packaged in a nucleus of about 10 m.

Organism	No: of base pair
174 bacteriophage	5386 bp
E.coli	4.6 x 10 bp
Lambda bacteriophage	48502 bp
Human DNA (haploid content)	3.3 x 10 bp

ERWIN CHARGAFF'S RULE

- This rule was proposed by **Erwin Chargaff**.
- It states that, in a double stranded DNA, the ratio between adenine and thymine, and guanine and cytosine are equal.

ie, A=T and G=C

If C = 30% then G = 30%, A = 20% and T = 20%

HETEROCHROMATIN AND EUCHROMATIN

Heterochromatin	Euchromatin
Densely packed regions of chromatin	Loosely packed regions of chromatin
It stains dark	It stains light
It is transcriptionally inactive	It is transcriptionally active

EXPERIMENTAL EVIDENCES TO PROVE THAT DNA IS THE GENETIC MATERIAL

A. Bacterial transformation experiment (Griffith's experiment)

Materials used:

- Mice.
- > Sterptococcus pneumoniae bacteria.
 - 2 strains- Rough (R) and smooth (S) strain.
 - R strain does not cause pneumonia.
 - S strain causes pneumonia.

Experiment:

S-strain → Inject into mice → Mice die

R-strain → Inject into mice → Mice live

S-strain (Heat killed) → Inject into mice → Mice live

S-strain (Hk) + R-strain (live) → Inject into mice → Mice die

Conclusion:

Some "factors" transferred from heat killed S strain to R strain. This made **R strain** to get transferred into pathogenic **S strain**.

"The phenomenon by which a trait is transferred from one bacterium to another one directly is called bacterial transformation or Griffith effect."

Avery, Mac Leody, Mc Carty experiment

They discovered that:

- Digestion of protein and RNA (using Proteases and RNases) did not affect transformation. So the transforming substance was not a protein or RNA.
- Digestion of DNA with DNase inhibited transformation.
 It means that DNA caused transformation of R cells to S cells, i.e. DNA was the transforming substance.

B. Viral infection experiment (Hershey and Chase experiment)

Materials used:

- o Bacteriophage (Virus that infect bacteria).
- o E. coli bacteria.
- Medium containing radioactive phosphcruz(P-32).
- o Medium containing radioactive sulphur (\$-35).
- o Blender.
- o Centrifuge.

Experiment:

- i. They grew some viruses on a medium that contained radioactive phosphorus (P-32) and some others on a medium that contained radioactive sulphur (S-35).
- ii. These preparations were used separately to infect E.coli.
- iii. After infection, the E.coli cells were agitated in a **blender**.
- iv. Then it is **centrifuged**.
- After centrifugation, heavier bacterial cells are formed as a pellet at the bottom. Lighter viral components remained as supernatant at the top.

Conclusion:

They found that:

✓ Supernatant contains viral protein labeled with S-35. Ie, the viral protein had not entered the bacterial cells. ✓ Pellet contains bacterial cells labeled with P-32. le, the viral DNA labeled with P-32 had entered the bacterial cells. This proves that DNA is the genetic material.

The Hershey-Chase Experiment

Criteria required for a molecule to be genetic material

- 1. It should be able to generate its replica.
- 2. It should be chemically and structurally stable.
- 3. It should provide scope for slow changes (mutation) that are required for evolution.
- 4. It should be able to express itself in the form of 'Mendelian characters'.

DIFFERENCES BETWEEN DNA AND RNA

DNA	RNA
Double stranded	Single stranded
Deoxyribose sugar	Ribose sugar
Nitrogen bases are ATGC	Nitrogen bases AUGC
Purines and pyrimidines are present in equal amount	Purines and pyrimidines are not present in equal amount
Seen in nucleus, mitochondria and chloroplast	Seen in cytoplasm, ribosome and nucleolus

DNA versus RNA

DNA	RNA	
 DNA can replicate. 	 RNA can also replicate. 	
2. DNA is stable . ie, it	2. RNA is not stable .	
does not change	Because, 2 OH group	
with different	present at every	
stages of life cycle,	nucleotide in RNA is a	
age or with change	reactive group and	
in physiology of an	makes RNA liable and	
organism. The	easily degradable.	
presence of		
thymine gives	3. RNA is reactive .	
additional stability	4. RNA mutates at faster	
to DNA.	rate.	
	Because, RNA is	
3. DNA is chemically	unstable. Therefore,	
less reactive.	viruses having RNA	
4. DNA can mutate .	genome and having	
	shorter life span	
	mutate and evolve	
E DNA is descendent	faster.	
5. DNA is dependent on RNA for the	5. RNA can directly code	
on RNA for the synthesis of	for the synthesis of	
•	proteins , hence can easily express the	
proteins.	easily express the characters. So for the	
	transmission of genetic	
	information RNA is	
	better.	
	Jetter.	

The DNA is structurally more stable and chemically less reactive when compared to RNA. Therefore, DNA is a better genetic material.

DNA REPLICATION

- Proposed by Watson and Crick.
- It is the synthesis of new DNA molecules from the pre-existing DNA.
- It is semi conservative type.

What is semi conservative replication?

The newly formed DNA will have one parental strand and one newly synthesized strand. As one strand is conserved, it is called semi conservative replication.

Replication process

In eukaryotes, DNA replication takes place at S phase of the cell cycle.

- Origin of replication starting point of replication.
- Helicase enzyme will unwind DNA.
- Hydrogen bond breaks down.
- Separated strands become template strand.
- o **Primer** (Short RNA) is formed first.
- DNA polymerase enzyme adds nucleotides to the primer. As a result leading strand and lagging strand is formed.

✓ Leading strand:

- It is formed in 5'-3' direction.
- Its formation is continuous.

✓ Lagging strand:

- It is formed in 5'-3' direction, but away from the replication fork.
- Its formation is discontinuous.
- Small fragments (**Okazaki fragments**) are formed first.
- Okazaki fragments are joined by DNA ligase enzyme.
- RNA primer is replaced with DNA.

Replication fork:

When the DNA helix is unwind up to a point, it appears to be a 'Y'shaped structure called replication fork.

EXPERIMENTAL PROOF FOR DNA REPLICATION (Messelson and Stahl experiment)

- ➤ E. coli was grown in a medium containing heavier isotope of nitrogen (N 15 medium).
 - Result: N15 was incorporated into both strands of DNA of E. coli. Thus DNA becomes heavier. This DNA is called heavier DNA.
- E. coli with heavier DNA is transferred to a medium containing lighter isotope of nitrogen (N 14 medium).
 - Result: After first generation: The DNA of daughter cells contained one heavier strand and one lighter strand.
 - ✓ Heavier strand strand containing N₁5.
 - ✓ Lighter strand strand containing N 14.
 - This indicated the semi conservative method of DNA replication.
 - After second generation: Half of the DNA molecules were hybrid (each DNA having one heavier and one lighter strand) and the other half were completely new (each DNA with lighter strands only).

TRANSCRIPTION

The process of copying genetic information from one strand of LNA into RNA is termed as transcription.

Requirements for transcription

- a. Enzyme.
- b. DNA.
- c. Transcription unit.

a. Enzyme:

- The enzyme that catalyzes transcription is RNA polymerase.
- In **bacteria** there is only **one** RNA polymerase.
- In eukaryotes there are three RNA polymerases.
- o RNA polymerase I (involved in the synthesis of RNA).

- RNA polymerase II (involved in the synthesis of precursor of mRNA, ie, hnRNA).
- RNA polymerase III (involved in the synthesis of tRNA, 5sRNA, SnRNA).

b. DNA:

DNA is needed for the synthesis of RNA.

c. Transcription unit:

- Transcription unit contains promoter, structural gene and terminator.
 - Promoter It provides binding site for RNA polymerase.
 - Structural gene It provides template strand for the formation of RNA.
 - Terminator It defines the end of the process of transcription.

Steps in the process of transcription

a. Initiation

- Transcription is initiated from the promoter region.
- RNA polymerase binds to the promoter region of DNA. As a result DNA unwinds. RNA formation starts.
- In bacteria, only one initiation factor sigma (σ) is required.
- In eukaryotes, several initiation factors are required.

b. Elongation

- The RNA chain is synthesized in 5'- 3' direction.
- The nucleotides are added to the growing chain.

c. Termination

- Termination occurs at terminator region.
- A termination factor rho (ρ) binds to the RNA polymerase and terminates transcription.

RNA PROCESSING IN EUKARYOTES

- The processing events include the following
 - Capping of the 5' end of the RNA.
 - Splicing.
 - Tailing (polyadenylation of the 3' end of the RNA).

Capping - an unusual nucleotide (methyl guanosine triphosphate) is added to the 5' end of the hnRNA.

Splicing - the introns (non – functional) are removed and the exons are joined together.

Tailing - adenylate residues are added at the 3'end of the RNA. It is mediated by an enzyme called **Poly A Polymerase**.

The hnRNA is now called mRNA, which is transported out of the nucleus for translation.

PROPERTIES OF RNA

- Complementary to the template strand of the DNA duplex.
- Identical to the non template strand (coding strand).

eg: Template strand – 3' TACGTACGTACG 5'
Coding strand – 5' ATGCATGCATGCATGC 3'
mRNA strand – 5' AUGCAUGCAUGCAUGC 3'

Template strand	Coding strand
It acts as a tempolate for the synthesis of mRNA during transcription	It is a sequence of DNA that has the same base sequence as that of mRNA (except thymine is replaced by uracil).
It runs from 3' – 5' direction	It runs from 5' – 3' direction.

EXONS AND INTRONS

Exons: Coding regions.

Introns: Non coding regions.

CISTRON

- Cistron: It is a segment of DNA, coding for a polypeptide.
- MONOCISTRONIC (In eukaryotes): Codes for only one polysaccharide.
- POLYCISTRONIC (In prokaryotes): Codes for more than one polysaccharide.

GENETIC CODE

- ➤ The sequence of nitrogen bases in mRNA which contains information for protein synthesis is called genetic code.
- The code is made up of 3 nitrogen bases. This is called **triplet code**. Eg: Code for Phenyl alanine is UUU and UUC.
- Codon The sequence of 3 bases determining a single amino acid is called codon.

- There are **64 codons** for 20 naturally occurring amino acids.
- George Gamow, Marshall Nirenberg, Severo Ochoa, Hargobind Khorana etc have made significant contributions to decipher the genetic code.
- George Gamow: Suggested that for coding 20 amino acids, the code should be made up of 3 nucleotides.
- Har Gobind Khorana: Developed the chemical method in synthesizing RNA molecules with defined combinations of bases (homopolymers & copolymers).
- Marshall Nirenberg: Developed cell-free system for protein synthesis.
- Severo Ochoa (polynucleotide phosphorylase) enzyme is used to polymerize RNA with defined sequences in a template independent manner.

Salient features of the genetic code.

- Genetic code is triplet code.
- Genetic code is universal in nature.
- Genetic code is unambiguous, ie, is one codon codes for only one amino acid.
- Genetic code is degenerate, i.e., a single amino acid is represented by many codons.
- Genetic code is comma less.
- For Genetic code has initiation codon and termination codon.
 - o Initiation codon AUG
 - Termination codon -UAA, UAC, UGA.

tRNA

tRNA has

- An Anticodon (NODOC) loop that has bases complementary to the code.
- An amino acid acceptor end to which amino acid binds.

- For initiation, there is another tRNA called initiator tRNA.
- There are no tRNAs for stop codons.
- Secondary (2-D) structure of tRNA looks like a cloverleaf. 3-D structure looks like inverted 'L'.

TRANSLATION

The process by which proteins are derived from RNA is called translation.

Requirements for translation

- Messenger RNA (mRNA)
- Ribosomes (70s ribosome in prokaryotes and 80s ribosome in eukaryotes)
- > Transfer RNA (tRNA)
- > Amino acids
- > Enzymes
- ► Energy source

Steps in the process of translation

Peptide Synthesis

1. Charging of tRNA

Amino acids are linked to their tRNA in the presence of amino acyl tRNA synthetase enzyme. So the tRNA becomes charged.

2. Initiation

- It begins at the **5' end** of the mRNA.
- The small subunit of ribosome binds to mRNA.
- The initiation codon in mRNA is AUG.
- The initiator tRNA (methionyl tRNA) having UAC at the anticodon site blinds to the initiation codon on the mRNA.
- The large subunit of ribosome then blinds to mRNA.
- The large subunit has two blinding sites for tRNA A site and P site.
- > The initiator tRNA is founds at the P site.
- All other tRNA first binds to A site and then shift to the P site.

3. Elongation

- Then another tRNA complex with an appropriate amino acid enters the ribosome and attaches at the **A site**.
- ➤ **Methionine** from the first tRNA is now attached to the amino acid of the second tRNA through peptide bond.
- > The first tRNA is removed from the **P site**.
- The second tRNA is moved to the P site from A site (translocation).
- Then again third tRNA with amino acid bind at the A site.
- This process of peptide bond formation and translocation are repeated.

4. Termination

- When the tRNA reaches the termination codon (UAA, UAG, UGA) termination of protein synthesis occurs.
- A release factor binds to the termination codon (stop codon).
- This leads to the release of the polypeptide chain of amino acids and tRNA from the ribosome.

Untranslated regions (UTRs)

- They are the sections of the RNA before the start codon and after the stop codon that are not translated.
- > The UTRs are present at both 5' end and 3' end.

REGULATION OF GENE EXPRESSION

In eukaryotes:

In eukaryotes the regulation could be exerted at,

- I. Transcriptional level
- II. Processing level
- III. Transport of mRNA from nucleus to the cytoplasm
- IV. Translational level

In prokaryotes:

Operon Concept

It was put forward by **Jacob** and **Monod**.

The Lac Operon

- It controls the **degradation of lactose** in E.coli.
- > The operon consists of:
 - 3 structural genes z, y and a.
 - Operator gene
 - o Regulator gene ie, 'i' gene.
 - o Promoter region

- The structural genes transcribe together and form mRNA.
- This mRNA directs the synthesis of 3 enzymes:
 - β galactosidase
 - o Galactosidase permease
 - Galactosidase transacetylase
- ➤ The regulator gene synthesizes a regulator protein called "lac repressor".
- ➤ The regulation can be positive or negative.

Positive	regulation	Negative regulation	
•	It occurs when lactose is present in the medium and enzymes are required to metabolize it.	 It occurs when lactose is absent in the medium and enzymes are not required. 	n d
•	Lactose serves at the inducer and it inactivates the lac repressor. Lac repressor cannot bind to the operator	 Lac repressor is active. Lac repressor bind to the operator region. The structural gen 	or e
	region. The structural gene undergoes transcription and translation to produce the enzymes.	cannot underg transcription an translation and th enzymes are no produced.	d e

In the presence of inducer:

In the absence of inducer:

HUMAN GENOME PROJECT (HGP)

It was started in the year 1990 to map the entire genome and completed in 2003.

Why HGP is called a mega project?

Because: The total estimated cost of the project was around 9 billion US Dollars. Around 3300 books were required for storing the information of DNA sequence of a single human cell. A large amount of data was stored in computers. For this bioinformatics is used.

Goals of HGP

- To identify all the genes in human DNA.
- To **determine the sequence** of 3 billion base pairs in human DNA.
- To store this information in databases.
- To address **ethical**, **legal** and **social issues** (**ELSI**) that may arise from the project.

Methodologies

Two major approaches were used. They are:

- **Expressed sequence tags (ESTs)**: Sequencing the genes that are expressed as RNA.
- Sequence annotation: Sequencing the whole genome that contain coding and non-coding sequences.

Procedure:

Isolate total DNA from a cell → Convert in o random fragments → Clone in suitable host (e.g. BAC & YAC) for amplification → Fragments are sequenced using Aviomated DNA sequencers (using Frederick Sanger method) → Sequences are arranged based on overlapping regions → Alignment of sequences using computer programs

Features of human genome

- > The human genome contains **3164.7 million** nucleotides.
- Chromosome I has most genes (2968) and the Y has fewest (231).
- The largest human gene is dystophin having 2.4 million base pairs.

Repeated sequences – They are stretches of DNA sequences that are repeated many times. They have no direct coding function.

Application of HGP

- Biological systems can be well studied by the knowledge of DNA sequences.
- ➤ HG sequence used to develop a new approach to biological research.

DNA FINGER PRINTING

The technique was developed by Alec Jeffry.

Repetitive DNA	Satellite DNA
A small stretch of DNA is repeated several times in the cotal DNA of a cell	 Highly repetitive non- transcribed region of DNA.

DNA Polymorphism: It is an inheritable mutation.

VN7R (Variable Number of Tandem Repeats): The repetitive sequences are called VNTR.

PCR (Polymerase Chain Reaction): It is used to amplify DNA.

Steps in DNA finger printing

- 1. Isolation of DNA
- 2. Digestion of DNA into fragments by restriction endonuclease
- 3. Separation of DNA fragments by electrophoresis
- 4. Transferring of separated DNA fragments into nitrocellulose paper (blotting)
- 5. Hybridization using labeled VNTR probe
- 6. Detection of hybridized DNA fragments be auto radiography

Application of DNA finger printing

- ✓ Used in forensic science to solve the problems of paternity, rape, murder etc.
- ✓ Used to diagnose genetic disorders.

PREPARED BY ARIFA T M A (HSST ZOOLOGY) DEMHSS THALANGARA, KASARAGOD.