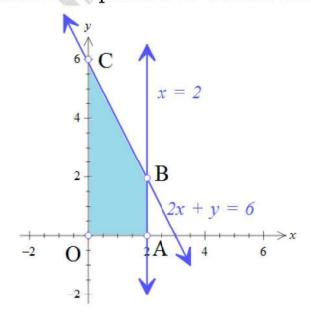


Model Questions

Question:

Consider the linear programming problem.

Maximize z = 11x + 7y


Subject to the constraints

$$2x + y \le 6$$
; $x \le 2$; $x,y \ge 0$

- (a) Find the feasible region.
- (b) Find the corner points of the feasible region.
- (b) Determine the maximum value.

Solution:

These inequalities are plotted as shown in figure.

The corner points of the feasible region are O(0,0), A(2,0), (2,2), (0,6).

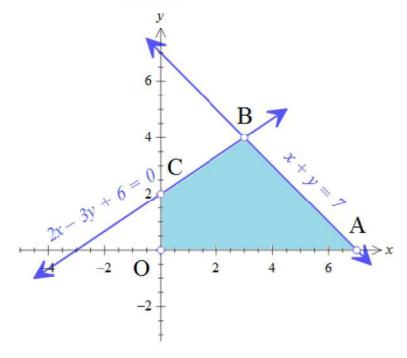
Corner points	Value of Z
O(0,0)	0
A(2,0)	22
B(2,2)	36
C(0,6)	42 Maximum

Maximum value of Z is = 42 at (0,6)

Question:

Consider the linear programming problem.

Minimize z = 13x - 15y


Subject to the constraints

$$x + y \le 7$$
; $2x - 3y + 6 \ge 0$; $x,y \ge 0$

- (a) Find the feasible region.
- (b) Find the corner points of the feasible region.
- (b) Determine the minimum value.

Solution:

These inequalities are plotted as shown in figure.

The corner points of the feasible region are O(0,0), A(7,0), (3,4), (0,2).

Corner points	Value of Z
O(0,0)	0
A(7,0)	91
B(3,4)	-21
C(0,2)	-30 Minimum

Minimum value of Z is = -30 at (0,6)

Question:

A manufacture produce two models bikes X and Y. Model X takes a 6 man hours avaliable per unit, while Model X takes a 10 man-hours avaliable per unit. There is a total of 450 man-houres avaliable per week. Handling and Marketing costs are 2000/- and 1000/- per unit for Models X and Y respectively. The total funds avaliable for these purpose are 80000/- per week. Profits per unit for model X and Y are 1000/- and 500/- respectively. How many bikes of each model should the manufacturer produce so as to yield a maximum profit? Find the maximum profit.

Solution:

Let the manufacture produce x number of Model X and y number Model Y bikes.

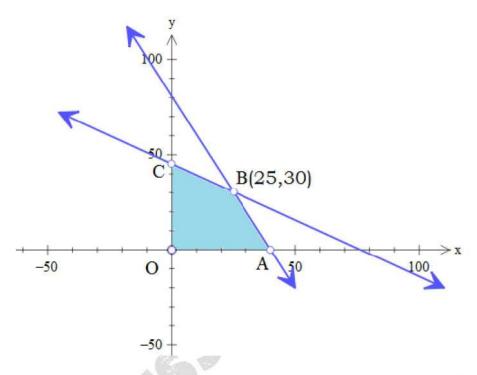
Wehave 450 man-hour avaliable per week

$$\therefore 6x + 10y \le 450$$
$$3x + 5y \le 225$$

Handling and Marketing costs are 2000/- and 1000/- per unit for Models X and Y respectively, total funds avaliable for these purpose are 80000/- per week.

$$2000x + 1000y \le 80000$$
$$2x + y \le 80$$

Also $x,y \ge 0$



Profits per unit for model X and Y are 1000/- and 500/- respectively.

So, Maximize Z = 1000x + 500ySubject to

$$3x + 5y \le 225$$
; $2x + y \le 80$; $x,y \ge 0$

These inequalities are plotted as shown in figure.

The corner points of the feasible region are O(0,0), A(40,0), (25,30), (0,45).

Corner points	Value of Z
O(0,0)	0
A(40,0)	40000 Maximum
B(25,30)	40000 Maximum
C(0,45)	22500

For Maximum profit manufacture must produce 25 number of model X and 30 number of model Y.

Home work questions

Question:(Imp2017)

Consider the linear programming problem.

Maximize z = x + y

Subject to the constraints

$$x-y \le -1$$
; $-2x+y \ge 0$; $x,y \ge 0$

- (a) Find the feasible region.
- (b) Find the corner points of the feasible region.
- (c) Find the maximum point.

Answer:

(a) (b) corner points (0,1),(1,2) (c) No maximum point.

Question:(Imp2017)

Consider the linear programming problem.

Maximize z = 50x + 40y

Subject to the constraints

$$x + 2y \ge 10$$
; $3x + 4y \le 24$; $x \ge 0, y \ge 0$

- (a) Find the feasible region.
- (b) Find the corner points of the feasible region.
- (c) Find the maximum value of Z.

Answer:

(a) Figure (b) corner points (0,5),(0,6),(4,3) (c) 320

Question:(Imp2016)

Consider the following L.P.P.

Maximize z = 3x + 9y

Subject to the constraints

$$x + 3y \le 6$$
; $x + y \ge 10$; $x \le y, x \ge 0, y \ge 0$

- (a) Draw its feasible region.
- (b) Find the corner points of the feasible region.

Answer:

(a)

(b) corner points (0,10),(0,20),(15,15),(5,5)

Question: (March 2016)

Consider the following L.P.P.

Maximize z = 3x + 2y

Subject to the constraints

$$x + 2y \le 10$$
; $3x + y \le 10$; $x,y \ge 0$

- (a) Draw its feasible region.
- (b) Find the corner points of the feasible region.
- (c) Find the maximum value of Z.

Answer:

(a)

(b) corner points (0,0),(5,0),(4,3),(0,5)

Prepared By

Fassal Peringolam

Calicut

www.sciencetablet.in

