HSSLiVE.IN

Chapter 11

Three Dimensional Geometry

We can identify each and every point of space with the help of three mutually perpendicular coordinate axes $O X, O Y$ and $O Z$.

In this chapter we shall study the following concepts.

1. Direction cosines and ratios
2. Equation of line: given point and parallel vector
3. Equation of line: given 2 points
4. Angle between two lines: Vector Form
5. Angle between two lines: Cartesian Form
6. Angle between two lines: Direction ratios or cosines
7. Shortest distance between two skew lines
8. Shortest distance between two parallel lines
9. Equation of plane: In Normal Form
10. Equation of plane: Prependicular to Vector and Passing Through a Point
11. Equation of plane: Passing Through 3 Non Collinear Points
12. Equation of plane: Intercept Form
13. Equation of plane: Passing Through Intersection Of Planes
14. Coplanarity of 2 lines
15. Angle between two planes
16. Distance of point from a plane
17. Angle between a Line and a Plane

11.1 Direction cosines and ratios

- If a directed line L passing through the origin makes angles α, β and γ with x, y and z-axes, respectively, called direction angles.
- The cosine of these angles, namely, $\cos \alpha, \cos \beta$ and $\cos \gamma$ are called direction cosines of the directed line L. The direction cosines are usually denoted by l, m, and n. i.e.,

$$
l=\cos \alpha, m=\cos \beta, n=\cos \gamma
$$

- If l, m, n are the direction cosines of a line L, then $l^{2}+m^{2}+n^{2}=1$
- Let a, b, c are proportional to the direction cosines l, m, n, then a, b, c are called the direction ratios.
- If a, b, c are direction ratios of a line L, then $a \hat{i}+b \hat{j}+c \hat{k}$ is a vector parallel to the line L.
- If l, m, n are direction cosines of a line L, then $l \hat{i}+m \hat{j}+n \hat{k}$ is a unit vector parallel to the line L.
- If l, m, n be the direction cosines and a, b, c ne the dirction ratios of a line, then

$$
l=\frac{a}{\sqrt{a^{2}+b^{2}+c^{2}}}, m=\frac{b}{\sqrt{a^{2}+b^{2}+c^{2}}}, n=\frac{c}{\sqrt{a^{2}+b^{2}+c^{2}}}
$$

- If $P\left(x_{1}, y_{1}, z_{1}\right)$ and $Q\left(x_{2}, y_{2}, z_{2}\right)$ be two points on a space, then the direction ratios of the line segement joining the points P and Q are:

$$
a=x_{2}-x_{1}, b=y_{2}-y_{1}, c=z_{2}-z_{1}
$$

The direction cosines of the line segement joining the points P and Q are:

$$
l=\frac{x_{2}-x_{1}}{|P Q|}, m=\frac{y_{2}-y_{1}}{|P Q|}, n=\frac{z_{2}-z_{1}}{|P Q|}
$$

where $|P Q|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}$

Problems

1. If a line makes angle $90^{\circ}, 60^{\circ}$ and 30° with the positive direction of x, y and z-axis respectively, find its direction cosines.
2. If a line makes angle $90^{\circ}, 135^{\circ}$ and 45° with the positive direction of x, y and z-axis respectively, find its direction cosines.
3. Find the direction cosines of x, y and z-axis.
4. Find the direction cosines of a line which makes equal angles with the coordinate axes.
5. If a line has direction ratios $2,-1,-2$, determine its direction cosines.
6. If a line has the direction ratios $-18,12,-4$, then what are its direction cosines ?
7. Find the direction cosines of the line passing through the two points $(-2,4,-5)$ and $(1,2,3)$.
8. Find the direction cosines of the sides of the triangle whose vertices are $(3,5,-4),(-1,1,2)$ and $(-5,-5,-2)$.
9. Show that the points $A(2,3,-4), B(1,-2,3)$ and $C(3,8,-11)$ are collinear.
10. Show that the points $(2,3,4),(-1,-2,1),(5,8,7)$ are collinear.

11.2 Equation of line: A given point and a parallel vector

- Vector Form: The vector equation of a straight line passing through a fixed point A with position vector \vec{a} and parallel to a given vector \vec{b} is

$$
\vec{r}=\vec{a}+\lambda \vec{b}
$$

- Cartesian Form: The cartesian equation of a straight line passing through a fixed point $A\left(x_{1}, y_{1}, z_{1}\right)$ and parallel to a given vector $\vec{b}=a \hat{i}+b \hat{j}+c \hat{k}$ is

$$
\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}
$$

Problems

1. Find the Vector and the Cartesian equations of the line through the point $(5,2,4)$ and which is parallel to the vector $3 \hat{i}+2 \hat{j}-8 \hat{k}$.
2. Find the equation of the line which passes through the point $(1,2,3)$ and is parallel to the vector $3 \hat{i}+2 \hat{j}-2 \hat{k}$
3. The Cartesian equation of a line is $\frac{x+3}{2}=\frac{y-5}{4}=\frac{z+6}{2}$. Find the vector equation for the line.
4. The Cartesian equation of a line is $\frac{x-5}{3}=\frac{y+4}{7}=\frac{z-6}{2}$. Find the vector equation for the line.
5. Find the equation of a line parallel to x-axis and passing through the origin.
6. Find the equation of the line in vector and in cartesian form that passes through the point with position vector $2 \hat{i}-\hat{j}+4 \hat{k}$ and is in the direction $\hat{i}+2 \hat{j}-\hat{k}$.
7. Find the cartesian equation of the line which passes through the point $(-2,4,-5)$ and parallel to the line given by $\frac{x+3}{3}=\frac{y-4}{5}=\frac{z+8}{6}$.
8. Find the vector equation of the line passing through the point $(1,2,-4)$ and perpendicular to the two lines: $\frac{x-8}{3}=\frac{y+19}{-16}=\frac{z-10}{7}$ and $\frac{x-15}{3}=\frac{y-29}{8}=\frac{z-5}{-5}$.

11.3 Equation of line: Given 2 points

- Vector Form: The vector equation of a straight line passing through two fixed points A and B with position vectors \vec{a} and \vec{b} respectively is

$$
\vec{r}=\vec{a}+\lambda(\vec{b}-\vec{a})
$$

- Cartesian Form: The cartesian equation of a straight line passing through two fixed points $A\left(x_{1}, y_{1}, z_{1}\right)$ and $B\left(x_{2}, y_{2}, z_{2}\right)$ is

$$
\frac{x-x_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{z-z_{1}}{z_{2}-z_{1}}
$$

Problems

1. Find the vector equation for the line passing through the points $(-1,0,2)$ and $(3,4,6)$.
2. Find the vector and the cartesian equations of the lines that passes through the origin and (5, -2, 3).
3. Find the vector and the cartesian equations of the line that passes through the points $(3,-2,-5),(3,-2,6)$.

11.4 Angle between two lines: Vector Form

- Let $L_{1}: \vec{r}=\overrightarrow{a_{1}}+\lambda \overrightarrow{b_{1}}$ and $L_{2}: \vec{r}=\overrightarrow{a_{2}}+\mu \overrightarrow{b_{2}}$ are two straight lines in space. Then the acute angle (θ) between the lines L_{1} and L_{2} is given by

$$
\cos \theta=\left|\frac{\overrightarrow{b_{1}} \cdot \overrightarrow{b_{2}}}{\left|\overrightarrow{b_{1}}\right|\left|\overrightarrow{b_{2}}\right|}\right|
$$

Problems

1. Find the angle between the pair of lines given by $\vec{r}=3 \hat{i}+2 \hat{j}-4 \hat{k}+\lambda(\hat{i}+2 \hat{j}+2 \hat{k})$ and $\vec{r}=5 \hat{i}-2 \hat{j}+\mu(3 \hat{i}+2 \hat{j}+6 \hat{k})$
2. Find the angle between the pair of lines given by $\vec{r}=2 \hat{i}-5 \hat{j}+\hat{k}+\lambda(3 \hat{i}+2 \hat{j}+6 \hat{k})$ and $\vec{r}=7 \hat{i}-6 \hat{k}+\mu(\hat{i}+2 \hat{j}+2 \hat{k})$
3. Find the angle between the pair of lines given by $\vec{r}=3 \hat{i}+\hat{j}-2 \hat{k}+\lambda(\hat{i}+2 \hat{j}-\hat{j}-2 \hat{k})$ and $\vec{r}=2 \hat{i}-\hat{j}+56 \hat{k}+\mu(3 \hat{i}-5 \hat{j}-4 \hat{k})$

11.5 Angle between two lines: Cartesian Form

- Let $L_{1}: \frac{x-x_{1}}{a_{1}}=\frac{y-y_{1}}{b_{1}}=\frac{z-z_{1}}{c_{1}}$ and $L_{2}: \frac{x-x_{2}}{a_{2}}=\frac{y-y_{2}}{b_{2}}=\frac{z-z_{2}}{c_{2}}$ are two straight lines in space. Then the acute angle (θ) between the lines L_{1} and L_{2} is given by

$$
\cos \theta=\left|\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}\right|
$$

- If lines L_{1} and L_{2} are parallel, then $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
- If the lines L_{1} and L_{2} are perpendicular, then $a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0$

Problems

1. Find the angle between the pair of lines $\frac{x+3}{3}=\frac{y-1}{5}=\frac{z+3}{4}$ and $\frac{x+1}{1}=$ $\frac{y-4}{1}=\frac{z-5}{2}$.
2. Find the angle between the following pair of lines $\frac{x-2}{2}=\frac{y-1}{5}=\frac{z+3}{-3}$ and $\frac{x+2}{-1}=\frac{y-4}{8}=\frac{z-5}{4}$
3. Find the angle between the following pair of lines $\frac{x-5}{4}=\frac{y-2}{1}=\frac{z-3}{8}$ and $\frac{x}{2}=\frac{y}{2}=\frac{z}{1}$
4. Show that the lines $\frac{x-5}{7}=\frac{y+2}{-5}=\frac{z}{1}$ and $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ are perpendicular to each other.
5. Find the values of p so that the lines $\frac{1-x}{3}=\frac{7 y-14}{2 p}=\frac{z-3}{2}$ and $\frac{7-7 x}{3 p}=$ $\frac{y-5}{1}=\frac{6-z}{5}$ are at right angles.
6. If the lines $\frac{x-1}{-3}=\frac{y-2}{2 k}=\frac{z-3}{2}$ and $\frac{x-1}{3 k}=\frac{y-1}{1}=\frac{z-6}{-5}$ are perpendicular. Find the value of k.

11.6 Angle between two lines: Direction ratios or cosines

- The acute $\operatorname{angle}(\theta)$ between the lines with direction ratios a_{1}, b_{1}, c_{1} and a_{2}, b_{2}, c_{2} is given by

$$
\cos \theta=\left|\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}\right|
$$

- The acute angle (θ) between the lines with direction cosines l_{1}, m_{1}, n_{1} and l_{2}, m_{2}, n_{2} is given by

$$
\cos \theta=\left|\frac{l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2}}{\sqrt{l_{1}^{2}+m_{1}^{2}+n_{1}^{2}} \sqrt{l_{2}^{2}+m_{2}^{2}+n_{2}^{2}}}\right|
$$

- If lines with direction ratios a_{1}, b_{1}, c_{1} and a_{2}, b_{2}, c_{2} are parallel, then $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
- If lines with direction ratios a_{1}, b_{1}, c_{1} and a_{2}, b_{2}, c_{2} are perpendicular, then $a_{1} a_{2}+$ $b_{1} b_{2}+c_{1} c_{2}=0$
- If lines with direction cosines l_{1}, m_{1}, n_{1} and l_{2}, m_{2}, n_{2} are parallel, then $\frac{l_{1}}{l_{2}}=\frac{m_{1}}{m_{2}}=$ $\frac{n_{1}}{n_{2}}$
- If lines with direction cosines l_{1}, m_{1}, n_{1} and l_{2}, m_{2}, n_{2} are perpendicular, then $l_{1} l_{2}+$ $m_{1} m_{2}+n_{1} n_{2}=0$

Problems

1. Show that the three lines with direction cosines $\frac{12}{13}, \frac{-3}{13}, \frac{-4}{13} ; \frac{4}{13}, \frac{12}{13}, \frac{3}{13} ; \frac{3}{13}, \frac{-4}{13}, \frac{12}{13}$ are mutually perpendicular.
2. Show that the line through the points $(1,-1,2),(3,4,-2)$ is perpendicular to the line through the points $(0,3,2)$ and $(3,5,6)$.
3. Show that the line joining the origin to the point $(2,1,1)$ is perpendicular to the line determined by the points $(3,5,-1),(4,3,-1)$.
4. Show that the line through the points $(4,7,8),(2,3,4)$ is parallel to the line through the points $(-1,-2,1),(1,2,5)$.
5. Find the angle between the lines whose direction ratios are a, b, c and $b-c, c-a, a-b$.
6. If the coordinates of the points A, B, C, D be $(1,2,3),(4,5,7),(-4,3,-6)$ and $(2,9,2)$ respectively, then find the angle between the lines $A B$ and $C D$.
7. If l_{1}, m_{1}, n_{1} and l_{2}, m_{2}, n_{2} are the direction cosines of two mutually perpendicular lines, show that the direction cosines of the line perpendicular to both of these are $m_{1} n_{2}-m_{2} n_{1}, n_{1} l_{2}-n_{2} l, m_{1} n_{2}-m_{2} n_{1}, l_{1} m_{2}-l_{2} m_{1}$

11.7 Shortest distance between two skew lines

In a space, there are lines which are neither intersecting nor parallel. Such pair of lines are called Skew lines.

- Vector Form: Let $l_{1}: \vec{r}=\overrightarrow{a_{1}}+\lambda \overrightarrow{b_{1}}$ and $l_{2}: \vec{r}=\overrightarrow{a_{2}}+\mu \overrightarrow{b_{2}}$ are two skew lines in space. Then the shortest distance between the lines is given by

$$
d=\left|\frac{\left(\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right) \cdot\left(\overrightarrow{a_{2}}-\overrightarrow{a_{1}}\right)}{\left|\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right|}\right|
$$

- Cartesian Form: Let $l_{1}: \frac{x-x_{1}}{a_{1}}=\frac{y-y_{1}}{b_{1}}=\frac{z-z_{1}}{c_{1}}$ and $l_{2}: \frac{x-x_{2}}{a_{2}}=\frac{y-y_{2}}{b_{2}}=$ $\frac{z-z_{2}}{c_{2}}$ are two skew lines in space. Then the shortest distance between the lines is given by

$$
d=\left|\frac{\left|\begin{array}{ccc}
x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\
a_{1} & b_{1} & b_{2} \\
a_{2} & b_{2} & c_{2}
\end{array}\right|}{\sqrt{\left(b_{1} c_{2}-b_{2} c_{1}\right)^{2}+\left(c_{1} a_{2}-c_{2} a_{1}\right)^{2}+\left(a_{1} b_{2}-a_{2} b_{1}\right)^{2}}}\right|
$$

Problems

1. Find the shortest distance between the lines $\frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1}$ and $\frac{x-3}{1}=$ $\frac{y-5}{-2}=\frac{z-7}{1}$.
2. Find the shortest distance between the lines $\vec{r}=\hat{i}+\hat{j}+\lambda(2 \hat{i}-\hat{j}+\hat{k})$ and $\vec{r}=$ $2 \hat{i}+\hat{j}-\hat{k}+\mu(3 \hat{i}-5 \hat{j}+2 \hat{k})$
3. Find the shortest distance between the lines $\vec{r}=\hat{i}+2 \hat{j}+\hat{k}+\lambda(\hat{i}-3 \hat{j}+2 \hat{k})$ and $\vec{r}=4 \hat{i}+5 \hat{j}+6 \hat{k}+\mu(2 \hat{i}+3 \hat{j}+\hat{k})$
4. Find the shortest distance between the lines $\vec{r}=6 \hat{i}+2 \hat{j}+2 \hat{k}+\lambda(\hat{i}-2 \hat{j}+2 \hat{k})$ and $\vec{r}=-4 \hat{i}-\hat{k}+\mu(3 \hat{i}-2 \hat{j}-2 \hat{k})$
5. Find the shortest distance between the lines $\vec{r}=(1-t) \hat{i}+(t-2) \hat{j}+(3-2 t) \hat{k}$ and $\vec{r}=(s+1) \hat{i}+(2 s-1) \hat{j}-(2 s+1) \hat{k}$

11.8 Shortest distance between two parallel lines

Let $l_{1}: \vec{r}=\overrightarrow{a_{1}}+\lambda \vec{b}$ and $l_{2}: \vec{r}=\overrightarrow{a_{2}}+\mu \vec{b}$ are two parallel lines in space. Then the shortest distance between the lines is given by

$$
d=\left|\frac{\vec{b} \times\left(\overrightarrow{a_{2}}-\overrightarrow{a_{1}}\right)}{|\vec{b}|}\right|
$$

Problems

1. Find the distance between the lines $\vec{r}=\hat{i}+2 \hat{j}-4 \hat{k}+\lambda(2 \hat{i}+3 \hat{j}+6 \hat{k})$ and $\vec{r}=$ $3 \hat{i}+3 \hat{j}-5 \hat{k}+\mu(2 \hat{i}+3 \hat{j}+6 \hat{k})$

11.9 Equation of plane: In Normal Form

- Vector Form: Vector equation of a plane at a distance d from the origin and \hat{n} is the unit vector normal to the plane through the origin is

$$
\vec{r} \cdot \hat{n}=d
$$

- Cartesian Form: Equation of a plane which is at a distance of d from the origin and the direction cosines of the normal to the plane as l, m, n is

$$
l x+m y+n z=d
$$

- For a plane $a x+b y+c z=d$
- Direction ratios of normal $=a, b, c$
- Direction cosines of normal: $l=\frac{a}{\sqrt{a^{2}+b^{2}+c^{2}}}, m=\frac{b}{\sqrt{a^{2}+b^{2}+c^{2}}}, n=$ $\frac{c}{\sqrt{a^{2}+b^{2}+c^{2}}}$
- Distance from origin $=\frac{d}{\sqrt{a^{2}+b^{2}+c^{2}}}$

Problems

1. Find the vector equation of the plane which is at a distance of $\frac{6}{\sqrt{29}}$ from the origin and its normal vector from the origin is $2 \hat{i}-3 \hat{j}+4 \hat{k}$. Also find its cartesian form.
2. Find the vector equation of the plane which is at a distance of 7 from the origin and its normal vector from the origin is $3 \hat{i}+5 \hat{j}-6 \hat{k}$.
3. In each of the following cases, determine the direction cosines of the normal to the plane and the distance from the origin.
(a) $z=2$
(b) $x+y+z=1$
(c) $2 x+3 y-z=5$
(d) $5 y+8=0$
4. Find the distance of the plane $2 x-3 y+4 z-6=0$ from the origin.
5. Find the Cartesian equation of the following planes:
(a) $\vec{r} \cdot(\hat{i}+\hat{j}-\hat{k})=2$
(b) $\vec{r} \cdot(2 \hat{i}+3 \hat{j}-4 \hat{k})=1$
(c) $\vec{r} .((s-2 t) \hat{i}+(3-t) \hat{j}+(2 s+t) \hat{k})=2$
6. Find the direction cosines of the unit vector perpendicular to the plane $\vec{r} \cdot(6 \hat{i}-3 \hat{j}+$ $2 \hat{k})+1=0$
7. Find the coordinates of the foot of the perpendicular drawn from the origin to the plane $2 x-3 y+4 z-6=0$.
8. In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin.
(a) $2 x+3 y+4 z-12=0$
(b) $3 y+4 z-6=0$
(c) $x+y+z=1$
(d) $5 y+8=0$

11.10 Equation of plane: Prependicular to Vector and Passing Through a Point

- Vector Form: Vector equation of a plane passing through the point A whose position vector is \vec{a} and perpendicular to the vector \vec{N} is

$$
(\vec{r}-\vec{a}) \cdot \vec{N}=0
$$

- Cartesian Form: The Cartesian Equation of a plane passing through $A\left(x_{1}, y_{1}, z_{1}\right)$ and perpendiculat to a line with direction ratios a, b, c is

$$
a\left(x_{1}-x_{2}\right)+b\left(y_{2}-y_{1}\right)+c\left(z_{2}-z_{1}\right)
$$

Problems

1. Find the vector and cartesian equations of the plane which passes through the point $(5,2,-4)$ and perpendicular to the line with direction ratios $2,3,-1$.
2. Find the vector and cartesian equations of the planes
(a) that passes through the point $(1,0,-2)$ and the normal to the plane is $\hat{i}+\hat{j}-\hat{k}$
(b) that passes through the point $(1,4,6)$ and the normal to the plane is $\hat{i}-2 \hat{j}+\hat{k}$
3. Find the vector equation of the line passing through $(1,2,3)$ and perpendicular to the plane $\vec{r} \cdot(\hat{i}+2 \hat{j}-5 \hat{k})+9=0$.
4. Find the equation of the plane passing through (a, b, c) and parallel to the plane $\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=2$
5. If O be the origin and the coordinates of P be $(1,2,-3)$, then find the equation of the plane passing through P and perpendicular to $O P$.

11.11 Equation of plane: Passing Through 3 Non Collinear Points

- Vector Form: Vector equation of a plane passing through three points R, S, T whose position vectors are $\vec{a}, \vec{b}, \vec{c}$ is

$$
(\vec{r}-\vec{a}) \cdot[(\vec{b}-\vec{a}) \times(\vec{c}-\vec{a})]=0
$$

- Cartesian Form: The Cartesian Equation of a plane passing through $R\left(x_{1}, y_{1}, z_{1}\right)$, $R\left(x_{2}, y_{2}, z_{2}\right), R\left(x_{3}, y_{3}, z_{3}\right)$ is given by

$$
\left|\begin{array}{ccc}
x-x_{1} & y-y_{1} & z-z_{1} \\
x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\
x_{3}-x_{1} & y_{3}-y_{1} & z_{3}-z_{1}
\end{array}\right|=0
$$

Problems

HSSLiVE.IN

1. Find the vector equations of the plane passing through the points $R(2,5,-3), S(-2,-3,5)$ and $T(5,3,-3)$
2. Find the equations of the planes that passes through three points.
(a) $(1,1,-1),(6,4,-5),(-4,-2,3)$
(b) $(1,1,0),(1,2,1),(2,2,-1)$

11.12 Equation of plane: Intercept Form

- Equation of a plane with intercepts a, b, c on x, y and z - axis respectively is

$$
\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1
$$

Problems

1. Find the equation of the plane with intercepts 2,3 and 4 on the x, y and z-axis respectively.
2. Find the intercepts cut off by the plane $2 x+y-z=5$
3. Find the equation of the plane with intercept 3 on the y-axis and parallel to $Z O X$ plane.

11.13 Equation of plane: Passing Through Intersection Of Planes

- Vector Form: Vector equation of a plane passing through the intersection of planes $\vec{r} \cdot \overrightarrow{n_{1}}=d_{1}$ and $\vec{r} \cdot \overrightarrow{n_{2}}=d_{2}$ and also through the point $\left(x_{1}, y_{1}, z_{1}\right)$ is

$$
\vec{r} \cdot\left(\overrightarrow{n_{1}}+\lambda \overrightarrow{n_{2}}\right)=d_{1}+\lambda d_{2} \quad \text { HSSLiVE.IN }
$$

- Cartesian Form: The Cartesian Equation of a plane passing through the intersection of planes $a_{1} x+b_{1} y+c_{1} z=d_{1}$ and $a_{2} x+b_{2} y+c_{2} z=d_{2}$ and also through the point $\left(x_{1}, y_{1}, z_{1}\right)$ is

$$
\left(a_{1} x+b_{1} y+c_{1} z-d_{1}\right)+\lambda\left(a_{2} x+b_{2} y+c_{2} z-d_{2}\right)=0
$$

Problems

1. Find the equation of the plane through the intersection of the planes $3 x-y+2 z-4=$ 0 and $x+y+z-2=0$ and the point $(2,2,1)$.
2. Find the vector equation of the plane passing through the intersection of the planes $\vec{r} \cdot(2 \hat{i}+2 \hat{j}-3 \hat{k})=7, \vec{r} \cdot(2 \hat{i}+5 \hat{j}+3 \hat{k})=9$ and through the point $(2,1,3)$.
3. Find the vector equation of the plane passing through the intersection of the planes $\vec{r} .(\hat{i}+\hat{j}+\hat{k})=6, \vec{r} \cdot(2 \hat{i}+3 \hat{j}+4 \hat{k})=-5$ and through the point $(1,1,1)$.
4. Find the equation of the plane passing through the intersection of the planes $\vec{r} \cdot(\hat{i}+$ $\hat{j}+\hat{k})=1, \vec{r} \cdot(2 \hat{i}+3 \hat{j}-\hat{k})+4=0$ and parallel to $x-$ axis.
5. Find the equation of the plane through the line of intersection of the planes $x+y+z=$ 1 and $2 x+3 y+4 z=5$ which is perpendicular to the plane $x-y+z=0$.

11.14 Coplanarity of 2 lines

- Vector Form: Two lines $\vec{r}=\overrightarrow{a_{1}}+\lambda \overrightarrow{b_{1}}$ and $\vec{r}=\overrightarrow{a_{2}}+\mu \overrightarrow{b_{2}}$ are coplanar if

$$
\left(\overrightarrow{a_{2}}-\overrightarrow{a_{1}}\right) \cdot\left(\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right)=0
$$

- Cartesian Form: Two lines $\frac{x-x_{1}}{a_{1}}=\frac{y-y_{1}}{b_{1}}=\frac{z-z_{1}}{c_{1}}$ and $\frac{x-x_{2}}{a_{2}}=\frac{y-y_{2}}{b_{2}}=$ $\frac{z-z_{2}}{c_{2}}$ are coplanar if

$$
\left|\begin{array}{ccc}
x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2}
\end{array}\right|=0 \text { \&SH HSSLVE.IN }
$$

Problems

1. Show that the lines $\frac{x+3}{-3}=\frac{y-1}{1}=\frac{z-5}{5}$ and $\frac{x+1}{-1}=\frac{y-2}{2}=\frac{z-5}{5}$ are coplanar.

11.15 Angle between two planes

- Vector Form: The $\operatorname{Angle}(\theta)$ between two planes $\vec{r} \cdot \overrightarrow{n_{1}}=d_{1}$ and $\vec{r} \cdot \overrightarrow{n_{2}}=d_{2}$ is given by

$$
\cos \theta=\left|\frac{\overrightarrow{n_{1}} \cdot \overrightarrow{n_{2}}}{\left|\overrightarrow{n_{1}}\right|\left|\overrightarrow{n_{2}}\right|}\right|
$$

- Cartesian Form: The Angle (θ) between two planes $a_{1} x+b_{1} y+c_{1} z=d_{1}$ and $a_{2} x+b_{2} y+c_{2} z=d_{2}$ is given by

$$
\cos \theta=\left|\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}\right|
$$

- If Planes are parallel, then $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
- If the Planes are perpendicular, then $a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0$

Problems

1. Find the angle between the two planes $2 x+y-2 z=5$ and $3 x-6 y-2 z=7$ using vector method.
2. Find the angle between the planes whose vector equations are $\vec{r} \cdot(2 \hat{i}+2 \hat{j}-3 \hat{k})=5$, $\vec{r} \cdot(3 \hat{i}-3 \hat{j}+5 \hat{k})=3$
3. Find the angle between the two planes $3 x-6 y+2 z=7$ and $2 x+2 y-2 z=5$.
4. In the following cases, determine whether the given planes are parallel or perpendicular, and in case they are neither, find the angles between them.
(a) $7 x+5 y+6 z+30=0$ and $3 x-y-10 z+4=0$
(b) $2 x+y+3 z-2=0$ and $x-2 y+5=0$
(c) $2 x-2 y+4 z+5=0$ and $3 x-3 y+6 z-1=0$

(d) $2 x-y+3 z-1=0$ and $2 x-y+3 z+3=0$
(e) $4 x+8 y+z-8=0$ and $y+z-4=0$

11.16 Distance of point from a plane

- Vector Form: The distance of a point with position vector \vec{a} from the plane $\vec{r} \cdot \vec{n}=d$ is given by

$$
\text { Distance }=\left|\frac{\vec{a} \cdot \vec{n}-d}{|\vec{n}|}\right|
$$

- Cartesian Form: The distance of the point $\left(x_{1}, y_{1}, z_{1}\right)$ from the plane $a x+b y+c z=$ d is given by

$$
\text { Distance }=\left|\frac{a x_{1}+b y_{1}+c z_{1}-d}{\sqrt{a^{2}+b^{2}+c^{2}}}\right|
$$

Problems

1. Find the distance of a point $(2,5,-3)$ from the plane $\vec{r} \cdot(6 \hat{i}-3 \hat{j}+2 \hat{k})=4$
2. In the following cases, find the distance of each of the given points from the corresponding given plane.
(a) $(0,0,0) ; 3 x-4 y+12 z=3$
(b) $(3,-2,1) ; 2 x-y+2 z+3=0$
(c) $(2,3,-5) ; x+2 y-2 z=9$
(d) $(-6,0,0) ; 2 x-3 y+6 z-2=0$
3. Find the distance between the point $P(6,5,9)$ and the plane determined by the points $A(3,-1,2), B(5,2,4)$ and $C(-1,-1,6)$.

11.17 Angle between a Line and a Plane

- The angle (Φ) between a line $\vec{r}=\vec{a}+\lambda \vec{b}$ and the plane $\vec{r} \cdot \vec{n}=d$ is given by

$$
\sin \Phi=\left|\frac{\vec{b} \cdot \vec{n}}{|\vec{b}||\vec{n}|}\right|
$$

Problems

HSSLiVE.IN

1. Find the angle between the line $\frac{x+1}{2}=\frac{y}{3}=\frac{z-3}{6}$ and the plane $10 x+2 y-11 z=3$.
