CHAPTER 10
 VECTOR ALGEBRA

SAY 2018

1. Consider the vectors $\vec{a}=\hat{i}+\hat{j}+3 \hat{k}$ and $\vec{b}=\hat{i}+4 \hat{j}-\hat{k}$
a) Find the projection of \vec{a} on \vec{b}.
b) If \vec{a} is perpendicular to \vec{c}, then projection of \vec{a} on $\vec{c}=$ \qquad
c) Write a vector \vec{d} such that the projection of \vec{a} on $\vec{c}=|\vec{a}|$.
2. a) In the figure ABCD is a parallelogram. If
$\overrightarrow{A B}=3 \hat{i}-\hat{j}+2 \hat{k}$ and $\overrightarrow{A D}=\hat{i}+\hat{j}+2 \hat{k}$.
Find $\overrightarrow{A C}$ and $\overrightarrow{D B}$.
b) If \vec{a} on \vec{b} are adjacent sides of any parallelogram and \vec{c} and \vec{d} are its diagonals,
show that $|\vec{c} \times \vec{d}|=2|\vec{a} \times \vec{b}|$.

MARCH 2018

3. a) Prove that for any vectors, $\vec{a}, \vec{b}, \vec{c}$,

$$
\begin{equation*}
[\vec{a}+\vec{b}, \vec{b}+\vec{c}, \vec{c}+\vec{a}]=2[\vec{a} \vec{b} \vec{c}] . \tag{3}
\end{equation*}
$$

b) Show that if $\vec{a}+\vec{b}, \vec{b}+\vec{c}, \vec{c}+\vec{a}$ are coplanar, then $\vec{a}, \vec{b}, \vec{c}$ are also coplanar.
4. a) If $\vec{a}=3 \hat{i}+2 \hat{j}+2 \hat{k}, \vec{b}=\hat{i}+2 \hat{j}-2 \hat{k}$
i) Find $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$.
ii) Find a unit vector perpendicular to both

$$
\begin{equation*}
\vec{a}+\vec{b} \text { and } \vec{a}-\vec{b} \text {. } \tag{2}
\end{equation*}
$$

b) Consider the points $\mathrm{A}(1,2,7), \mathrm{B}(2,6,3)$,
$\mathrm{C}(3,10,-1)$.
i) Find $\overrightarrow{A B}$ and $\overrightarrow{B C}$.
ii) Prove that $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are collinear.

SAY 2017
5. a) The value of $|\vec{x}|$. If \vec{b} is a unit vector and $(2 \vec{x}-2 \vec{b}) \cdot(\vec{x}+\vec{b})=30$
a) $\sqrt{6}$
b) 6
c) 4
d) 12
(1)
b) If $\vec{a}=\vec{i}+3 \vec{j}$ and $\vec{b}=3 \vec{j}+\vec{k}$, then find a unit vector which is perpendicular to both \vec{a} and \vec{b}
6. a) Cosine of the angle between the vectors $\hat{i}+\hat{j}+\hat{k}$ and $\hat{i}-\hat{j}+\hat{k}$ is
a) $1 / 3$
b) $2 / 3$
c) $1 / 2$
d) 1
b) If $\vec{a}, \vec{b}, \vec{c}$ are three vector such that $|\vec{a}|=3$, $|\vec{b}|=4,|\vec{c}|=4$ and each one of them is perpendicular to the sum of the other two, then find $|\vec{a}+\vec{b}+\vec{c}|$

MARCH 2017

7. a) The projection of the vector $2 \hat{i}+3 \hat{j}+2 \hat{k}$ on the vector $\hat{i}+\hat{j}+\hat{k}$ is
a) $\frac{3}{\sqrt{3}}$
b) $\frac{7}{\sqrt{3}}$
c) $\frac{3}{\sqrt{17}}$
d) $\frac{7}{\sqrt{17}}$
b) Find the area of a parallelogram whose adjacent sides are the vector $2 \hat{i}+\hat{j}+\hat{k}$ and $\hat{i}-\hat{j}$.
8. a) The angle between the vectors $\hat{i}+\hat{j}$ and $\hat{j}+\hat{k}$ is
a) 60°
b) 30°
c) 45^{0}
d) 90°
b) If $\vec{a}, \vec{b}, \vec{c}$ are unit vector such that
$\vec{a}+\vec{b}+\vec{c}=0$ find the value of $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$

SAY 2016
9. a) The projection of the vector $\hat{i}-\hat{j}$ on the vector $\hat{i}+\hat{j}$ is
i) 1
ii) 0
iii) 2
iv) -1
b) Find the area of the parallelogram whose adjacent sides are given by the vectors
$\vec{a}=3 \hat{i}+\hat{j}+4 \hat{k}$ and $\vec{b}=\hat{i}-\hat{j}+\hat{k}$
10. a) $(\vec{a}-\vec{b}) \times(\vec{a}+\vec{b})$ is equal to
i) $\overrightarrow{0}$
ii) $|\vec{a}|^{2}-|\vec{b}|^{2}$
iii) $\vec{a} \times \vec{b}$
iv) $2(\vec{a} \times \vec{b})$
b) If \vec{a} and \vec{b} are any two vectors, then prove that $(\vec{a} \times \vec{b})^{2}=\left|\begin{array}{ll}\vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} \\ \vec{a} \cdot \vec{b} & \vec{b} \cdot \vec{b}\end{array}\right|$
c) Using vectors, show that the points $\mathrm{A}(1,2,7)$, $B(2,6,3)$ and $C(3,10,-1)$ are collinear.

MARCH 2016

11. a) The angle between the vectors \vec{a} and \vec{b} such that $|\vec{a}|=|\vec{b}|=\sqrt{2}$ and $\vec{a} \cdot \vec{b}=1$ is
i) $\frac{\pi}{2}$
ii) $\frac{\pi}{3}$
iii) $\frac{\pi}{4}$
iv) 0
b) Find the unit vector along $\vec{a}-\vec{b}$, where

$$
\begin{equation*}
\vec{a}=\hat{i}+3 \hat{j}-\hat{k} \text { and } \vec{b}=3 \hat{i}+2 \hat{j}+\hat{k} \tag{2}
\end{equation*}
$$

12. a) If the points A and B are $(1,2,-1)$ and $(2,1,-1)$ respectively, then $\overrightarrow{A B}$ is
i) $\hat{i}+\hat{j}$
ii) $\hat{i}-\hat{j}$
iii) $2 \hat{i}+\hat{j}-\hat{k}$
iv) $\hat{i}+\hat{j}+\hat{k}$
b) Find the value of λ for which the vectors $2 \hat{i}-4 \hat{j}+5 \hat{k}, \hat{i}-\lambda \hat{j}+\hat{k}$ and $3 \hat{i}+2 \hat{j}-5 \hat{k}$ are coplanar.
c) Find the angle between the vectors $\vec{a}=\hat{i}+\hat{j}-\hat{k}$ and $\vec{b}=\hat{i}-\hat{j}+\hat{k}$.

SAY 2015

13. Consider the vectors $\vec{a}=2 \hat{i}+2 \hat{j}-5 \hat{k}$ and $\vec{b}=-\hat{i}+7 \hat{k}$.
a) Find $\vec{a}+\vec{b}$
b) Find a unit vector in the direction of $\vec{a}+\vec{b}$
14. Consider the triangle ABC with vertices $\mathrm{A}(1,2,3)$, $\mathrm{B}(-1,0,4)$ and $\mathrm{C}(0,1,2)$
a) Find $\overrightarrow{A B}, \overrightarrow{A C}$
b) Find $\angle A$.
c) Find the area of triangle ABC .

MARCH 2015

15. (a) If $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ respectively are the position vectors representing the vertices $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ of a parallelogram, then write \vec{d} in terms of \vec{a}, \vec{b} and \vec{c}.
b) Find the projection vector of $\vec{b}=\hat{i}+2 \hat{j}+\hat{k}$ along the vector $\vec{a}=2 \hat{i}+\hat{j}+2 \hat{k}$.

Also write \vec{b} as the sum of a vector along \vec{a}
and a vector perpendicular to \vec{a}.
c) Find the area of a parallelogram for which the vectors $\vec{a}=2 \hat{i}+\hat{j} \quad$ and $3 \hat{i}+\hat{j}+4 \hat{k} \quad$ are adjacent sides.

OR

a) Write the magnitude of a vector \vec{a} in terms of dot product.
b) If \vec{a}, \vec{b} and $\vec{a}+\vec{b}$ are unit vectors, then prove that the angle between \vec{a} and \vec{b} is $\frac{2 \pi}{3}$.
c) If $\vec{a}=2 \hat{i}+\hat{j}-3 \hat{k}$ and $m \hat{i}+3 \hat{j}-\hat{k}$ are perpendicular to each other, then find m. Also find the area of the rectangle having these two vectors as sides.
$\mathrm{B}(1,2,3)$ and $\mathrm{C}(2,3,1)$,
a) Find $\overrightarrow{A B}$ and $\overrightarrow{A C}$
b) Find $\overrightarrow{A B} \times \overrightarrow{A C}$
c) Hence find the area of the triangle ABC .
(Score: 2)

SAY 2013
19. a) Find the angle between the vectors

$$
\begin{equation*}
\vec{a}=3 \hat{i}+4 \hat{j}+\hat{k} \text { and } \vec{b}=2 \hat{i}+3 \hat{j}-\hat{k} \tag{3}
\end{equation*}
$$

b) The adjacent sides of a parallelogram are $\vec{a}=3 \hat{i}+\lambda \hat{j}+\hat{k}$ and $\vec{b}=\hat{i}+\lambda \hat{j}-\hat{k}$
i) Find $\vec{a} \times \vec{b}$
ii) If the area of the parallelogram is $\sqrt{42}$ square units, find the value of λ.

MARCH 2013

20. The position vectors of the vertices of $\triangle A B C$ are $3 \hat{i}-4 \hat{j}-4 \hat{k}, 2 \hat{i}-\hat{j}+\hat{k}$ and $\hat{i}-3 \hat{j}-5 \hat{k}$.
a) Find $\overrightarrow{A B}, \overrightarrow{B C}$ and $\overrightarrow{C A}$.
b) Prove that $\Delta \mathrm{ABC}$ is a right angled triangle.

SAY 2012
21. a) For any three vector $\vec{a}, \vec{b}, \vec{c}$ show that

$$
\begin{equation*}
\vec{a} \times(\vec{b}+\vec{c})+\vec{b} \times(\vec{c}+\vec{a})+\vec{c} \times(\vec{a}+\vec{b})=\overrightarrow{0} \tag{1}
\end{equation*}
$$

b) Given $\mathrm{A}(1,1,1) \mathrm{B}(1,2,3)$ and $\mathrm{C}(2,3,1)$ are the vertices if $\triangle \mathrm{ABC}$. Find the area of $\triangle \mathrm{ABC}$. (3)
c) Find the area of parallelogram with adjacent sides \vec{a} and \vec{b}.

MARCH 2014

17. Let $\vec{a}=2 \hat{i}-\hat{j}+2 \hat{k}$ and $\vec{b}=6 \hat{i}+2 \hat{j}+3 \hat{k}$.
a) Find a unit vector in the direction of $\vec{a}+\vec{b}$.
b) Find the angle between \vec{a} and \vec{b}.

MARCH 2012
18. Consider the triangle ABC with vertices $\mathrm{A}(1,1,1)$,
22. Consider the vectors $\vec{a}=2 \hat{i}+\hat{j}-2 \hat{k}$ and $\vec{b}=6 \hat{i}+3 \hat{j}+2 \hat{k}$
a) Find $\vec{a} \cdot \vec{b}$ and $\vec{a} \times \vec{b}$
b) Verify that $|\bar{a} \times \bar{b}|^{2}=|\vec{a}|^{2}|\bar{b}|^{2}-(\bar{a} \cdot \bar{b})^{2}$

SAY 2011

23. ABCD is a parallelogram with A as the origin.
\vec{b} and \vec{d} are the position vectors of B and D respectively.

a) What is the position vector of C ?
(1)
b) What is the angle between $\overrightarrow{A B}$ and

$$
\begin{equation*}
\overrightarrow{A D} \text { ? } \tag{1}
\end{equation*}
$$

c) Find $\overrightarrow{A C}$
d) If $|\overrightarrow{A C}|=|\overrightarrow{B D}|$, show that $A B C D$ is a rectangle.

MARCH 2011

24. a) With the help of suitable figure, for any three vectors $\bar{a}, \bar{b}, \bar{c}$. Show that
$(\bar{a}+\bar{b})+\bar{c}=\bar{a}+(\bar{b}+\bar{c})$
b) If $\bar{a}=\hat{i}-\hat{j}+\hat{k}, \quad \bar{b}=2 \hat{i}-2 \hat{j}-\hat{k}$, what is the projection of \bar{a} on \bar{b} ?
$\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$ are perpendicular.
b) Given the position vector of three points $A(\hat{i}-\hat{j}+2 \hat{k}), B(4 \hat{i}+5 \hat{j}+8 \hat{k})$, $C(3 \hat{i}+3 \hat{j}+6 \hat{k})$
i) Find $\overrightarrow{A B}$ and $\overrightarrow{A C}$
ii) Prove that $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are collinear points.

SAY 2010
26. Let $\mathrm{A}(2,3,4), \mathrm{B}(4,3,2)$ and $\mathrm{C}(5,2,-1)$ be three points.
a) Find $\overrightarrow{A B}, \overrightarrow{B C}$.
b) Find the projection of $\overrightarrow{B C}$ on $\overrightarrow{A B}$.
c) Find the area of the triangle ABC .

MARCH 2010

27. a) Choose the correct answer from the bracket. Let $A B C D$ be a parallelogram whose sides $A B$ and AD are represented by the vectors $2 \hat{i}+4 \hat{j}-5 \hat{k}$ and $\hat{i}+2 \hat{j}+3 \hat{k}$ respectively. If \vec{a} is a unit vector parallel to $\overrightarrow{A C}$, then \vec{a} equals

$$
\begin{align*}
& {\left[\frac{1}{7}(3 i-6 j-3 k), \frac{1}{7}(3 i+6 j-2 k),\right.} \tag{1}\\
& \left.\quad \frac{1}{7}(3 i+5 j-3 k), \frac{1}{3}(3 i+6 j+2 k)\right]
\end{align*}
$$

b) Find a vector coplanar with the vector

$$
\begin{equation*}
\vec{a}=2 \hat{i}-3 \hat{j}+4 \hat{k} \quad \text { and } \vec{b}=\hat{i}+3 \hat{j}+\hat{k} \tag{1}
\end{equation*}
$$

25. a) If $\bar{a}=3 \hat{i}-\hat{j}-5 \hat{k} \bar{b}=\hat{i}-5 \hat{j}+3 \hat{k}$ show that
c) If G is the centroid of a triangle ABC , then
$\overrightarrow{G A}+\overrightarrow{G B}+\overrightarrow{G C}=$ \qquad

JUNE 2009
28. a) If $\mathrm{A}(1,2,4)$ and $\mathrm{B}(2,-1,3)$ are two points.
i) Find $\overrightarrow{A B}$
ii) Find unit vector along $\overrightarrow{A B}$
b) Show that the points with position vectors
$2 \hat{i}+6 \hat{j}+3 \hat{k} ; \hat{i}+2 \hat{j}+7 \hat{k} ; 3 \hat{i}+10 \hat{j}-\hat{k}$ are
collinear.
29. a) i) Find λ for which $\vec{a}=\lambda \hat{i}-\hat{j}+5 \hat{k}$ and $\vec{b}=3 \hat{i}+4 \hat{j}-\hat{k}$ are orthogonal.
ii) not in the present syllabus.
b) P,Q, R. S are points with position vectors $2 \hat{i}+4 \hat{j}+6 \hat{k}, \quad 3 \hat{i}+5 \hat{j}+4 \hat{k}, \hat{i}+2 \hat{j}+3 \hat{k}$ and $5 \hat{i}+8 \hat{j}+5 \hat{k}$ respectively.
i) Find the vectors $\overrightarrow{P Q}, \overrightarrow{P R}$ and $\overrightarrow{P S}$.
ii) Show that P, Q, R and S are coplanar.
c) not in the present syllabus.

OR
a) i) Find the projection of $\hat{i}+\hat{j}+\hat{k}$ in the direction of $\hat{i}+\hat{j}$.
ii) Not in the present syllabus.
b) Not in the present syllabus.
c) Find the area of the parallelogram determined by the vectors $\vec{a}=\hat{i}+\hat{j}+3 \hat{k}$, $\vec{b}=3 \hat{i}-4 \hat{j}+5 \hat{k}$.

MARCH 2009
30. Let $\bar{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=2 \hat{i}+3 \hat{j}, \vec{c}=3 \hat{i}+5 \hat{j}-2 \hat{k}$, $\vec{d}=-\hat{j}+\hat{k}$
a) Find $\vec{b}-\vec{a}$
b) Find the unit vector along $\vec{b}-\vec{a}$
c) Prove that $\vec{b}-\vec{a}$ and $\vec{d}-\vec{c}$ are parallel vectors.

MARCH 2008

31. a) D,E,F are the mid-points of sides of $\triangle A B C$.

Show that for any point O ,

$$
\begin{equation*}
\overrightarrow{O A}+\overrightarrow{O B}+\overrightarrow{O C}=\overrightarrow{O D}+\overrightarrow{O E}+\overrightarrow{O F} \tag{2}
\end{equation*}
$$

b) Prove that the points whose position vectors are given by $2 \hat{i}-\hat{j}+\hat{k}, \hat{i}-3 \hat{j}-5 \hat{k}$ and $3 \hat{i}-4 \hat{j}-4 \hat{k}$ form a right-angled triangle. (3)
32. Consider the points $\mathrm{A}(0,-2,1), \mathrm{B}(1,-1,-2)$ and $\mathrm{C}(-1,1,0)$ lying in a plane.
i) Compute $\overrightarrow{A B}$ and $\overrightarrow{A C}$
ii) Find $\overrightarrow{A B} \times \overrightarrow{A C}$
iii) Find a unit vector perpendicular to the plane.

SAY 2008
33. Consider the vectors $\vec{a}=2 \hat{i}+2 \hat{j}-5 \hat{k}$ and $\vec{b}=-\hat{i}+7 \hat{k}$
a) Find $\vec{a}+\vec{b}$
b) Find a unit vector in the direction of $\vec{a}+\vec{b}$
34. Consider the triangle ABC with vertices $\mathrm{A}(1,2,3), \mathrm{B}(-1,0,4)$ and $(0,1,2)$
a) Find $\overrightarrow{A B}$ and $\overrightarrow{A C}$
b) Find $\angle A$.
c) Find the area of triangle ABC .

MARCH 2007

35. Consider the following quadrilateral ABCD in which $\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}$ are the mid points of the sides.
D

a) Find $\overrightarrow{P Q}$ and $\overrightarrow{S R}$
b) Show that PQRS is a parallelogram.
c) If \vec{a} is any vector, prove that

$$
\begin{equation*}
\vec{a}=(\vec{a} \cdot \hat{i}) \hat{i}+(\vec{a} \cdot \hat{j}) \hat{j}+(\vec{a} \cdot \hat{k}) \hat{k} \tag{2}
\end{equation*}
$$

36. Consider the vectors $\vec{a}=\hat{i}+3 \hat{j}+\hat{k}$, $\vec{b}=2 \hat{i}-\hat{j}-\hat{k}$ and $\vec{c}=\lambda \hat{i}+7 \hat{j}+3 \hat{k}$.
a) Find $\vec{a} \cdot \vec{b}$
b) Find the angle between \vec{a} and \vec{b}
c) If $\vec{a}, \vec{b}, \vec{c}$ are coplanar vectors, find λ.
d) Using the values of λ,

$$
\begin{equation*}
\text { evaluate } \vec{a} \times(\vec{b} \times \vec{c}) \tag{2}
\end{equation*}
$$

EXTRA QUESTIONS

1. Find λ if the vectors $2 \hat{i}+\hat{j}-\hat{k}$ and $\hat{i}-4 \hat{j}+\lambda \hat{k}$ are orthogonal.
2. Find the value of x if the vectors $\vec{a}=2 \hat{i}-\hat{j}+\hat{k}$, $\vec{b}=x \hat{i}+2 \hat{j}-3 \hat{k}$ and $\vec{c}=3 \hat{i}-4 \hat{j}+5 \hat{k}$ are coplanar.
3. If $\vec{a}=2 \hat{i}+\hat{j}-\hat{k}, \vec{b}=\hat{i}+2 \hat{j}+\hat{k}, \vec{c}=3 \hat{i}-3 \hat{k}$ are the position vectors of three points A, B and C . Prove that A, B and C are collinear.
4. Prove that $[\vec{a}+\vec{b}, \vec{b}+\vec{c}, \vec{c}+\vec{a}]=2[\vec{a} \vec{b} \vec{c}]$
5. If $|\vec{a}|=2,|\vec{b}|=5,|\vec{a} \times \vec{b}|=8$, then find $\vec{a} \cdot \vec{b}$
6. Find the area of the parallelogram whose diagonals are represented by the vectors $-2 \hat{i}+\hat{j}+5 \hat{k}$ and $\hat{i}-2 \hat{j}-\hat{k}$
7. Find a unit vector perpendicular to $3 \hat{i}-2 j+6 \hat{k}$
8. Find the unit vector in the direction of sum of the vectors $\vec{a}+\vec{b}$, where $\vec{a}=\hat{i}+2 \hat{j}-\hat{k}$ and $\vec{b}=2 \hat{i}-3 \hat{j}+2 \hat{k}$
9. Find the unit vector perpendicular to both the vectors $2 \hat{i}-\hat{j}+\hat{k}$ and $3 \hat{i}-4 \hat{j}-\hat{k}$.
10. If \vec{a} and \vec{b} are perpendicular vectors, show that $(\vec{a}+\vec{b})^{2}=(\vec{a}-\vec{b})^{2}$
11. If $|\vec{a}|=10,|\vec{b}|=2, \vec{a} . \vec{b}=12$, then find $|\vec{a} \times \vec{b}|$
12. Show that $\left[\begin{array}{lll}\vec{b} \times \vec{c} & \vec{c} \times \vec{a} & \vec{a} \times \vec{b}\end{array}\right]=\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]^{2}$
13. Find the angle between the vectors $\vec{a}=\hat{i}-2 \hat{j}-2 \hat{k}$ and $\vec{b}=2 \hat{i}+3 \hat{j}-6 \hat{k}$
14. Prove that the angle between two diagonals of a cube is $\cos ^{-1}\left(\frac{1}{3}\right)$
15. If \vec{a} and \vec{b} are any two vectors, prove that $|\vec{a} \times \vec{b}|^{2}=|\vec{a}|^{2}|\vec{b}|^{2}-(\vec{a} \cdot \vec{b})^{2}$
16. With the help of vectors, the area of triangle PQR whose vertices are $\mathrm{P}(1,3,2), \mathrm{Q}(2,-1,1)$ and $\mathrm{R}(-1,2,3)$
17. Find the sine of the angle between the vectors $2 \hat{i}-\hat{j}-\hat{k}$ and $4 \hat{i}+7 \hat{j}+3 \hat{k}$
18. Find the projection of a vector $2 \hat{i}-3 \hat{j}+2 \hat{k}$ on the vector $\hat{i}+2 \hat{j}+3 \hat{k}$
19. Find the volume of the parallelepiped whose coterminous edges are given by the vectors $\hat{i}+2 \hat{j}+\hat{k}, 2 \hat{i}-\hat{j}-2 \hat{k}$ and $\hat{i}+2 \hat{j}-3 \hat{k}$.
20. Find the volume of the tetrahedron whose coterminous edges are given by the vectors $2 \hat{i}-3 \hat{j}+\hat{k}, \hat{i}-\hat{j}+2 \hat{k}$ and $2 \hat{i}+\hat{j}-\hat{k}$.
[Hint: Volume of a tetrahedron $=\frac{1}{6} \times$ Volume of a parallelepiped.]
21. Show that the vectors $2 \hat{i}-4 \hat{j}+2 \hat{k}$ and $3 \hat{i}-6 \hat{j}+3 \hat{k}$ are collinear.
22. Let $\vec{a}=\hat{i}+4 \hat{j}+2 \hat{k}, \vec{b}=3 \hat{i}-2 \hat{j}+7 \hat{k}$
and $\vec{c}=2 \hat{i}-\hat{j}+4 \hat{k}$. Find a vector \vec{p} which is perpendicular to both \vec{a} and \vec{b} and $\vec{p} \cdot \vec{c}=18$.
23. If $\vec{a}, \vec{b}, \vec{c}$ are three vectors such that $|\vec{a}|=5,|\vec{b}|=12$ and $|\vec{c}|=13$, and $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$, find the value of $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$.
24. Find λ when the projection of $\vec{a}=\lambda \hat{i}+\hat{j}+4 \hat{k}$ on $\vec{b}=2 \hat{i}+6 \hat{j}+3 \hat{k}$ is 4 units.
25. Prove that $\vec{a} .(\vec{b}+\vec{c}) \times(\vec{a}+\vec{b}+\vec{c})=0$
26. Show that $\vec{a}+\vec{b}, \vec{b}+\vec{c}, \vec{c}+\vec{a}$ are coplanar.
27. Find the value of $\hat{i} \cdot(\hat{j} \times \hat{k})+(\hat{i} \times \hat{k}) \cdot \hat{j}$.
28. If \vec{a} and \vec{b} are two unit vectors and θ is the angle between them, show that $\sin \left(\frac{\theta}{2}\right)=\frac{1}{2}|\vec{a}-\vec{b}|$.
29. Prove that $\vec{a} \cdot(\vec{b}+\vec{c}) \times(\vec{a}+2 \vec{b}+3 \vec{c})=[\vec{a} \vec{b} \vec{c}]$

