CHAPTER 9

DIFFERENTIAL EQUATIONS

SAY 2018

1. a) Write the integrating factor of the differential equation: $\frac{d y}{d x}+\frac{y}{x}=\sin x$
b) slope of the tangent to a curve at any point is twice the x coordinate of the point. If the curve passes through the point (1,4), find its equation. (3)

MARCH 2018

2. a) The degree of the differential equation $x y\left(\frac{d^{2} y}{d x^{2}}\right)^{2}+x^{4}\left(\frac{d y}{d x}\right)^{3}-\frac{d y}{d x}=0$ is
a) 4
b) 3
c) 2
d) 1
(1)
b) Find the general solution of the differential equation $\sec ^{2} x \tan y d x+\sec ^{2} y \tan x d y=0$

SAY 2017
3. a) The degree of the differential equation

$$
2 x^{2} \frac{d^{2} y}{d x^{2}}+x^{4}\left(\frac{d y}{d x}\right)^{3}+7=0 \text { is }
$$

a) 4
b) 3
c) 2
d) 1
b) Solve the differential equation

$$
\begin{equation*}
\left(1+y^{2}\right) \frac{d x}{d y}+x=e^{-\tan ^{-1} y} \tag{5}
\end{equation*}
$$

MARCH 2017
4. a) The order of the differential equation $x^{4} \frac{d^{2} y}{d x^{2}}=1+\left(\frac{d y}{d x}\right)^{3}$ is
a) 1
b) 3
c) 4
d) 2
b) Find the particular solution of the differential equation $\left(1+x^{2}\right) \frac{d y}{d x}+2 x y=\frac{1}{1+x^{2}}, y=0$ when $\mathrm{x}=1$

SAY 2016

5. a) The degree of the differential equation
$\left(\frac{d^{2} y}{d x^{2}}\right)^{2}+\cos \left(\frac{d y}{d x}\right)=0$ is
i) 2
ii) 1
iii) 0
iv) not defined
6. Solve $\frac{d y}{d x}+2 y \tan x=\sin x, y=0$, when $x=\frac{\pi}{3}$ (5)

MARCH 2016

7. a) $y=a \cos x+b \sin x$ is the solution of the differential equation.
i) $\frac{d^{2} y}{d x^{2}}+y=0$
ii) $\frac{d^{2} y}{d x^{2}}-y=0$
iii) $\frac{d y}{d x}+y=0$
iv) $\frac{d y}{d x}+x \frac{d y}{d x}=0$
b) Find the solution of the differential equation
$x \frac{d y}{d x}+2 y=x^{2} \quad(x \neq 0)$ given that $y=0$
when $x=1$

SAY 2015
8. (a) Write the order and degree of the differential equation: $x y\left(\frac{d^{2} y}{d x^{2}}\right)^{2}+x\left(\frac{d y}{d x}\right)^{3}-y \frac{d y}{d x}=0$ (1)
(b) Find the general solution of the differential equation $y \log y d x-x d y=0$
(c) Find the integrating factor of the differential equation $x \frac{d y}{d x}-y=2 x^{2}$.

MARCH 2015

9. (a) Consider the family of all circles having their centre at the point $(1,2)$. Write the equation of the family.

Write the corresponding differential equation.
(b) Write the integrating factor of the differential

$$
\begin{equation*}
\text { equation } \cos x \frac{d y}{d x}+y=\sin x ; 0 \leq x<\frac{\pi}{2} \tag{2}
\end{equation*}
$$

JUNE 2014
10. Consider the differential equation

$$
\begin{equation*}
\frac{d y}{d x}-3 y \cot x=\sin 2 x \tag{1}
\end{equation*}
$$

a) Find its integrating factor.
b) Find its solution, given that $y=2$ when

$$
\begin{equation*}
x=\frac{\pi}{2} . \tag{5}
\end{equation*}
$$

MARCH 2014

11. Consider the differential equation $\frac{d^{2} y}{d x^{2}}+y=0$
a) Write its order and degree.
b) Verify that $y=a \cos x+b \sin x$, where $a, b \in R$ is a solution of the given differential equation.

SAY 2013

12. a) From the differential equation of the family of circle having centre on y -axis and radius 3 units.
b) Solve the differential equation:
$\frac{d y}{d x}=\frac{x^{2}+y^{2}}{2 x y}$

MARCH 2013

13. a) The general solution of the differential equation $\frac{d y}{d x}=e^{x-y}$ is
a) $e^{y}+e^{x}=c$
b) $e^{y}-e^{x}=c$
c) $e^{-y}+e^{-x}=c$
d) $e^{-y}-e^{-x}=c$
b) Solve the differential equation

$$
\begin{equation*}
\frac{d y}{d x}=\frac{2 x y}{1+x^{2}}+x^{2}+2 \tag{5}
\end{equation*}
$$

SAY 2012
14. Prove that the differential equation $\left(3 x y+y^{2}\right) d x+\left(x^{2}+x y\right) d y=0$ is a homogenous differential equation of degree zero.
Solve the differential equation.
b) Find its general solution.

MARCH 2012

15. Consider the differential equation $x d y-y d x=\sqrt{x^{2}+y^{2}} d x$
a) Express it in the form $\frac{d y}{d x}=F(x, y)$
b) Show that it is a homogeneous of degree zero.
c) Find its general solution.

SAY 2011
16. a) Write the order and degree of the differential equation of $\left(\frac{d y}{d x}\right)^{2}+\left(\frac{d y}{d x}\right)-\sin ^{2} y=0$
b) Solve the differential equation

$$
\frac{d y}{d x}+2 y \tan x=\sin x
$$

MARCH 2011

17. a) i) Solution of the differential equation

$$
\begin{equation*}
y^{\prime}-y=0 \text { is } y=\ldots \ldots \ldots . \tag{1}
\end{equation*}
$$

ii) Solve the differential equation

$$
\begin{equation*}
\frac{d y}{d x}+y \sec x=\tan x \tag{2}
\end{equation*}
$$

b) From the differential equation of the family of ellipses, having foci on the x - axis and centre at the origin.

SAY 2010
18. If $\cos x \frac{d y}{d x}+y \sin x=\tan ^{2} x$ is a differential equation, then
a) Find its order and degree.
(1)

MARCH 2010

19. a) Prove that the integrating factor of the differential equation:

$$
\begin{equation*}
\left(1-x^{2}\right) \frac{d y}{d x}-x y=1 \text { is } \sqrt{1-x^{2}} \tag{1}
\end{equation*}
$$

b) Solve : $x y^{2} \frac{d y}{d x}=x^{3}+y^{3}$

JUNE 2009
20. a) From the differential equation corresponding to the equation $x y=c^{2}$.
b) Consider the differential equation
$\left(x^{2}+y^{2}\right) d x=2 x y d y$
i) Write the equation in the form

$$
\begin{equation*}
\frac{d y}{d x}=g\left(\frac{y}{x}\right) \tag{1}
\end{equation*}
$$

ii) Solve the equation completely.

MARCH 2009

21. a) From the differential equation corresponding to the function $y=a e^{x}+b e^{2 x}$.
b) State the order and degree of the differential equation obtained.
c) Solve the differential equation:
$x \frac{d y}{d x}=x+y$
22. Consider the differential equation

$$
\begin{equation*}
\frac{d y}{d x}+y \tan x=x^{2} \cos ^{2} x \tag{2}
\end{equation*}
$$

i) Find its integrating factor.
ii) Solve the differential equation.

MARCH 2007

23. Consider the differential equation $\frac{d^{2} y}{d x^{2}}=\cos x$
i) Write the order and degree.
(1)
ii) Find a two parameter family of solutions to the above differential equation.
iii) Solve the differential equation:

$$
\begin{equation*}
\sec ^{2} x \tan y d x+\sec ^{2} y \tan x d y=0 \tag{2}
\end{equation*}
$$

