# **CHAPTER 9**

# **DIFFERENTIAL EQUATIONS**

## **SAY 2018**

1. a) Write the integrating factor of the differential

equation:  $\frac{dy}{dx} + \frac{y}{x} = \sin x$ (1)

b) slope of the tangent to a curve at any point is twice the x coordinate of the point. If the curve passes through the point (1,4), find its equation. (3)

# **MARCH 2018**

2. a) The degree of the differential equation

$$xy\left(\frac{d^2y}{dx^2}\right)^2 + x^4\left(\frac{dy}{dx}\right)^3 - \frac{dy}{dx} = 0$$
 is

- a) 4
- b) 3
- c) 2
- d) 1
- b) Find the general solution of the differential equation  $\sec^2 x \tan y dx + \sec^2 y \tan x dy = 0$ (3)

# **SAY 2017**

3. a) The degree of the differential equation

$$2x^{2} \frac{d^{2}y}{dx^{2}} + x^{4} \left(\frac{dy}{dx}\right)^{3} + 7 = 0 \text{ is}$$

- d) 1
- (1)
- b) Solve the differential equation

$$(1+y^2)\frac{dx}{dy} + x = e^{-\tan^{-1}y}$$
 (5)

### **MARCH 2017**

The order of the differential equation

$$x^4 \frac{d^2 y}{dx^2} = 1 + \left(\frac{dy}{dx}\right)^3$$
is

- c) 4
- $d)\overline{2}$

(1)

Find the particular solution of the differential equation  $(1+x^2)\frac{dy}{dx} + 2xy = \frac{1}{1+x^2}, y = 0$ when x = 1(5)

# **SAY 2016**

5. a) The degree of the differential equation

$$\left(\frac{d^2y}{dx^2}\right)^2 + \cos\left(\frac{dy}{dx}\right) = 0 \text{ is}$$

i) 2

(1)

iii) 0

- iv) not defined
- (1)
- 6. Solve  $\frac{dy}{dx} + 2y \tan x = \sin x$ , y = 0, when  $x = \frac{\pi}{3}$  (5)

#### **MARCH 2016**

7. a)  $y = a \cos x + b \sin x$  is the solution of the differential equation.

i) 
$$\frac{d^2y}{dx^2} + y = 0$$
 ii)  $\frac{d^2y}{dx^2} - y = 0$ 

ii) 
$$\frac{d^2y}{dx^2} - y = 0$$

iii) 
$$\frac{dy}{dx} + y = 0$$

iii) 
$$\frac{dy}{dx} + y = 0$$
 iv)  $\frac{dy}{dx} + x\frac{dy}{dx} = 0$ 

(1)

Find the solution of the differential equation

$$x\frac{dy}{dx} + 2y = x^2 \quad (x \neq 0)$$
 given that  $y = 0$ 

when x = 1(5)

#### **SAY 2015**

(a) Write the order and degree of the differential

equation:  $xy \left(\frac{d^2y}{dx^2}\right)^2 + x \left(\frac{dy}{dx}\right)^3 - y \frac{dy}{dx} = 0$  (1)

- (b) Find the general solution of the differential (3) equation  $y \log y dx - x dy = 0$
- (c) Find the integrating factor of the differential equation  $x \frac{dy}{dx} - y = 2x^2$ . (2)

#### **MARCH 2015**

9. (a) Consider the family of all circles having their centre at the point (1, 2). Write the equation of the family.

> Write the corresponding differential (1)equation.

(b) Write the integrating factor of the differential equation  $\cos x \frac{dy}{dx} + y = \sin x; 0 \le x < \frac{\pi}{2}$ 

#### **JUNE 2014**

10. Consider the differential equation

$$\frac{dy}{dx} - 3y \cot x = \sin 2x.$$

- a) Find its integrating factor. (1)
- b) Find its solution, given that y = 2 when

$$x = \frac{\pi}{2} \,. \tag{5}$$

## **MARCH 2014**

- 11. Consider the differential equation  $\frac{d^2y}{dx^2} + y = 0$ 
  - Write its order and degree. (1)
  - b) Verify that  $y = a \cos x + b \sin x$ , where  $a,b \in R$  is a solution of the given differential equation.

### **SAY 2013**

From the differential equation of the family of 12. a) circle having centre on y-axis and radius

3 units. (3)

b) Solve the differential equation:

$$\frac{dy}{dx} = \frac{x^2 + y^2}{2xy} \tag{3}$$

# **MARCH 2013**

- The general solution of the differential equation  $\frac{dy}{dx} = e^{x-y}$  is
  - a)  $e^{y} + e^{x} = c$  b)  $e^{y} e^{x} = c$

  - c)  $e^{-y} + e^{-x} = c$  d)  $e^{-y} e^{-x} = c$ (1)
  - b) Solve the differential equation

$$\frac{dy}{dx} = \frac{2xy}{1+x^2} + x^2 + 2\tag{5}$$

#### **SAY 2012**

14. Prove equation that the differential  $(3xy + y^2) dx + (x^2 + xy) dy = 0$  is a homogenous

differential equation of degree zero.

Solve the differential equation.

(4)

# **MARCH 2012**

15. Consider the differential equation

$$xdy - ydx = \sqrt{x^2 + y^2} dx$$

- a) Express it in the form  $\frac{dy}{dx} = F(x, y)$  (1)
- b) Show that it is a homogeneous of degree zero.
  - (2)
- c) Find its general solution.

# (3)

## **SAY 2011**

16. a) Write the order and degree of the differential

equation of 
$$\left(\frac{dy}{dx}\right)^2 + \left(\frac{dy}{dx}\right) - \sin^2 y = 0$$
 (1)

b) Solve the differential equation

$$\frac{dy}{dx} + 2y\tan x = \sin x$$

## **MARCH 2011**

17. a) i) Solution of the differential equation

$$y'-y = 0$$
 is  $y = \dots$  (1)

ii) Solve the differential equation

$$\frac{dy}{dx} + y \sec x = \tan x \tag{2}$$

b) From the differential equation of the family of ellipses, having foci on the x- axis and centre at the origin. (3)

#### **SAY 2010**

- 18. If  $\cos x \frac{dy}{dx} + y \sin x = \tan^2 x$  is a differential equation, then
  - a) Find its order and degree.
- (1)

b) Find its general solution.

# . (3)

# **MARCH 2010**

19. a) Prove that the integrating factor of the differential equation:

$$(1-x^2)\frac{dy}{dx} - xy = 1 \text{ is } \sqrt{1-x^2}$$
 (2)

b) Solve:  $xy^2 \frac{dy}{dx} = x^3 + y^3$  (3)

## **JUNE 2009**

- 20. a) From the differential equation corresponding to the equation  $xy = c^2$ . (1)
  - b) Consider the differential equation

$$\left(x^2 + y^2\right)dx = 2xy\,dy$$

i) Write the equation in the form

$$\frac{dy}{dx} = g\left(\frac{y}{x}\right) \tag{1}$$

ii) Solve the equation completely. (3)

#### **MARCH 2009**

- 21. a) From the differential equation corresponding to the function  $y = ae^x + be^{2x}$ . (2)
  - b) State the order and degree of the differential equation obtained. (1)
  - c) Solve the differential equation:

$$x\frac{dy}{dx} = x + y \tag{2}$$

# Page **35**

# **MARCH 2008**

22. Consider the differential equation

$$\frac{dy}{dx} + y \tan x = x^2 \cos^2 x$$

- i) Find its integrating factor. (2)
- ii) Solve the differential equation. (2)

## **MARCH 2007**

- 23. Consider the differential equation  $\frac{d^2y}{dx^2} = \cos x$ 
  - i) Write the order and degree. (1)
  - ii) Find a two parameter family of solutions to the above differential equation. (2)
  - iii) Solve the differential equation:

$$sec^2 x tan y dx + sec^2 y tan x dy = 0$$
 (2)

Education is the most powerful weapon which you can use to change the world.