

MODEL QUESTIONS

Question:

Find the area of the region bounded by the curves $y = 4 - x^2$, x - axis and the lines x = 0 and x = 2.

Solution:

We have $y = 4 - x^2$ or $x^2 = -(y-4)$, which represents a parabola

$$I = \int_{0}^{2} y dx$$

$$I = \int_{0}^{2} (4 - x^{2}) dx = \left[4x - \frac{x^{3}}{3} \right]_{0}^{2} = 8 - \frac{8}{3} = \frac{16}{3} \text{ units}$$

Question:

Find the area enclosed by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

Solution:

Area =
$$4 \times$$
 Area of quadrant = $4 \times I$

We have
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 | $I = \int_0^a y dx$
 $\frac{y^2}{b^2} = 1 - \frac{x^2}{a^2}$ | $I = \int_0^a \frac{b}{a} \sqrt{a^2 - x^2}$
 $y^2 = b^2 \left(1 - \frac{x^2}{a^2}\right)$ | $I = \frac{b}{a} \left[\frac{x}{2}\sqrt{a^2 - x^2} + \frac{a^2}{2}\sin^{-1}\frac{x}{a}\right]_0^a$
 $y^2 = b^2 \left(\frac{a^2 - x^2}{a^2}\right)$ | $= \frac{b}{a} \times \frac{a^2}{2}\sin^{-1}\frac{a}{a} = \frac{ba}{2}\sin^{-1}1 = \frac{\pi ab}{4}$
 $y = \pm \frac{b}{a}\sqrt{a^2 - x^2}$ | Area = $4 \times \frac{\pi ab}{4} = \frac{\pi ab}{4}$ units

Question:

Find the area between the arc PQ and chord PQ of the ellipse $\frac{x^2}{4} + \frac{y^2}{36} = 1$

Solution:

The equation of the chord is

$$y-0 = \frac{6-0}{0-2} \times (x-2)$$
$$y = -3(x-2)$$
$$y = -3x + 2$$

Also the equation of the ellipse is

$$\frac{x^{2}}{4} + \frac{y^{2}}{36} = 1$$

$$\frac{y^{2}}{36} = 1 - \frac{x^{2}}{4} \quad \text{or} \quad y^{2} = 36 \left(1 - \frac{x^{2}}{4}\right) \quad \text{or} \quad y^{2} = 36 \left(\frac{4 - x^{2}}{4}\right)$$

$$\therefore \quad y = 3\sqrt{4 - x^{2}}$$

Area =
$$3\int_{0}^{2} \sqrt{4-x^{2}} dx - \int_{0}^{2} (6-3x) dx$$

Area =
$$3\left[\frac{x}{2}\sqrt{4-x^2} + \frac{4}{2}\sin^{-1}\frac{x}{2}\right]_0^2 - \left[6x - \frac{3x^2}{2}\right]_0^2$$

= $3\left(\frac{2}{2}\sqrt{4-2^2} + \frac{4}{2}\sin^{-1}\frac{2}{2}\right) - \left(6\times2 - \frac{3\times2^2}{2}\right)$
= $3\left(0+2\frac{\pi}{2}\right) - 12 + 6 = \underline{3\pi-6} \text{ units}$

Question:

Find the area between the arc PQ and line $\frac{x}{3} + \frac{y}{2} = 1$ of the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$

Solution:

The equation of the line is

$$\frac{x}{3} + \frac{y}{2} = 1$$

$$y = 2\left(1 - \frac{x}{3}\right)$$

$$y = \frac{2}{3}(3 - x)$$

Also the equation of the ellipse is

$$\frac{x^{2}}{9} + \frac{y^{2}}{4} = 1$$

$$\frac{y^{2}}{4} = 1 - \frac{x^{2}}{9} \quad \text{or} \quad y^{2} = 4\left(1 - \frac{x^{2}}{9}\right) \quad \text{or} \quad y^{2} = 4\left(\frac{9 - x^{2}}{9}\right)$$

$$\therefore \qquad y = \frac{2}{3}\sqrt{9 - x^{2}}$$

Area =
$$\frac{2}{3}\int_{0}^{3} \sqrt{9 - x^2} dx - \frac{2}{3}\int_{0}^{2} (3 - x) dx$$

Area =
$$\frac{2}{3} \left[\frac{x}{2} \sqrt{9 - x^2} + \frac{9}{2} \sin^{-1} \frac{x}{3} \right]_0^3 - \frac{2}{3} \left[3x - \frac{x^2}{2} \right]_0^3$$

= $\frac{2}{3} \left(\frac{3}{2} \sqrt{9 - 3^2} + \frac{9}{2} \sin^{-1} \frac{3}{3} \right) - \frac{2}{3} \left(3 \times 3 - \frac{3^2}{2} \right)$
= $\frac{2}{3} \left(0 + \frac{9}{2} \times \frac{\pi}{2} \right) - \frac{2}{3} \left(9 - \frac{9}{2} \right)$
= $\frac{2}{3} \left(\frac{9\pi}{4} \right) - \frac{2}{3} \left(\frac{9}{2} \right)$
= $\frac{2}{3} \left(\frac{9\pi}{4} - \frac{18}{4} \right)$
= $\frac{2}{3} \times \frac{9}{4} (\pi - 2) = \frac{3}{2} (\pi - 2)$ units

Home work questions

Question:(Imp2017)

- (a) Area below the curve y = -2x + 3 in the first quadrant.
- (b) Draw a rough sketch of the curves

$$x^{2} + y^{2} = 4$$
 and $(x - y)^{2} + y^{2} = 4$

Also find the area between these two curves.

Answer: (a)
$$\frac{9}{4}$$
 (b) $\frac{8}{3}\pi - 2\sqrt{3}$

Question:(March2017)

- (a) Area bounded by the curves $y = \cos x$, $x = \frac{\pi}{2}$, x = 0, y = 0 is
- (b) Find the area between the curves

$$y^2 = 4ax \text{ and } x^2 = 4ay, a > 0$$

Answer: (a) 1 (b)
$$\frac{16}{3}$$
 a²

Question:(Imp2016)

- (a) The area bounded by the curves $y = 2\cos x$, the x axis from x = 0 to $x = \frac{\pi}{2}$ is (0, 1, 2, -1)
- (b) Find the area of the region bounded by the curves $y^2 = 4ax$ and $x^2 = 4ay$, a > 0

Answer: (a) 2 (b)
$$\frac{16}{3}$$
 a²

Question: (March2016)

Find the area of the circle $x^2 + y^2 = 4$ using integration.

Answer: 4π

Prepared By

Fassal Peringolam

NCERT TEXT BOOK QUESTIONS

Exercise 8.1

- 1. Find the area of the region bounded by the curve $y^2 = x$ and the lines x = 1, x = 4 and the x axis.

 Ans: $\frac{14}{3}$
- 2. Find the area of the region bounded by $y^2 = 9x$, x = 2, x = 4 and the x axis in the first quadrant.

 Ans:16 $4\sqrt{2}$
- 3. Find the area of the region bounded by $x^2 = 4y$, y = 2, y = 4 and the y-axis in the first quadrant.

 Ans: $\frac{32-84\sqrt{2}}{3}$
- 4. Find the area of the region bounded by the ellipse

$$\frac{x^2}{16} + \frac{y^2}{9} = 1$$
 Ans:12 π

5. Find the area of the region bounded by the ellipse

$$\frac{x^2}{4} + \frac{y^2}{9} = 1$$
 Ans:6 π

- 6. Find the area of the region in the first quadrant enclosed by x axis, line x = 3y and the circle $x^2 + y^2 = 4$. Ans: $\frac{\pi}{3}$
- 7. Find the area of the smaller part of the circle $x^2 + y^2 = a^2$ cut off by the line $x = \frac{a}{\sqrt{2}}$ Ans: $\frac{a^2}{2} \left(\frac{\pi}{2} 1\right)$
- 8. The area between $x = y^2$ and x = 4 is divided into two equal parts by the line x = a, find the value of a. Ans: $4^{2/3}$
- 9. Find the area of the region bounded by the parabola $y = x^2$ and y = |x|.

 Ans: $\frac{1}{3}$
- 10. Find the area bounded by the curve $x^2 = 4y$ and the line x = 4y 2 Ans: $\frac{9}{8}$
- 11. Find the area of the region bounded by the curve $y^2 = 4x$ and the line x = 3.

PLUS TWO MATHEMATICS

Exercise 8.2

- 1. Find the area of the circle $4x^2 + 4y^2 = 9$ which is interior to the parabola $x^2 = 4y$.

 Ans: $\frac{\sqrt{2}}{6} + \frac{9}{4}\sin^{-1}\frac{2\sqrt{2}}{3}$
- 2. Find the area bounded by curves

$$(x-1)^2 + y^2 = 1$$
 and $x^2 + y^2 = 1$ Ans: $\frac{2\pi}{3} - \frac{\sqrt{3}}{2}$

3. Find the area of the region bounded by the curves

$$y = x^2 + 2$$
 and $y = x$, $y = 0$ and $x = 3$

Ans: $\frac{21}{2}$

4. Using integration find the area of region bounded by the triangle whose vertices are (-1,0),(1,3) and (3,2)

Ans:4

5. Using integration find the area of the triangular region whose sides have the equations y = 2x + 1, y = 3x + 1 and x = 4.

Ans:8

Ans: $\frac{1}{2}$

EXERCISE

Find the area of the region bounded by the curves

$$y^2 = 9x, y = 3x$$

Find the area of the region bounded by the parabola

$$y^2 = 2px, x^2 = 2py$$
 Ans: $\frac{4p^2}{3}$

Find the area of the region bounded by the curve

$$y = x^3$$
 and $y = x + 6$ and $x = 0$ Ans:10

4. Find the area of the region bounded by the curve

$$y^2 = 4x$$
, $x^2 = 4y$ Ans: $\frac{16}{3}$

5. Find the area of the region bounded by the parabola $y^2 = 2x$ and the straight line x - y = 4

Page 7

Ans:18

2.

- 6. Find the area of the region bounded by the parabolas $y^2 = 6x$ and $x^2 = 6y$.

 Ans:12
- 7. Find the area enclosed by the curve

$$x = 3 \cos t$$
, $y = 2 \sin t$.

Ans:6π

8. Find the area of the region included between the parabola $y = \frac{3}{4}x^2$ and the line 3x - 2y + 12 = 0 Ans:27

Prepared By
Fassal Peringolam
Calicut

www.sciencetablet.in

