APPLICATIONS OF DEFINITE INTEGRALS

First area:

The area enclosed between the curve $y=f(x)$, the x axis and the ordinates at $x=a$ and $x=b$ is
$\int_{x=a}^{x=b} y d x$

Second area:

The area enclosed between the curve $x=f(y)$, the y axis

Third area:

If $f(x) \geq 0$, for $a \leq x \leq c$ and $f(x) \leq 0$, for $c \leq x \leq b$, then the area enclosed between the curve $y=f(x)$, the x axis and the ordinates at $x=a$ and $x=b$ is
$\int_{x=a}^{x=c} f(x) d x+\left|\int_{x=c}^{x=b} f(x) d x\right|$.

Fourth area:

The area enclosed between the curves $y=f_{1}(x) \quad y=f_{2}(x)$, the x axis and the ordinates at $x=a$ and $x=b$ is $\int_{x=a}^{x=b}\left[f_{2}(x)-f_{1}(x)\right] d x$.

Questions:

1. Find the area of the region bounded by the curve $y^{2}=x$ and the lines $x=1, x=4$ and the x-axis.

$$
\begin{aligned}
\text { Area of ABCD } & =\int_{x=1}^{x=4} y d x \\
& =\int_{x=1}^{x=4} \sqrt{x} d x \\
& =\frac{2}{3}\left[x^{\frac{3}{2}}\right]_{1}^{4}=\frac{2}{3}\left[4^{\frac{3}{2}}-1^{\frac{3}{2}}\right]=\frac{2}{3}\left(2^{3}-1\right)=\frac{2}{3}(7)=\frac{14}{3} \text { sq units. }
\end{aligned}
$$

2. Find the area of the region bounded by $y^{2}=9 x, x=2, x=4$ and the x-axis in the first quadrant.

$$
\begin{aligned}
\text { Area of ABCD } & =\int_{x=2}^{x=4} y d x \\
& =\int_{x=2}^{x=4} 3 \sqrt{x} d x \\
& =3 \times \frac{2}{3}\left[x^{\frac{3}{2}}\right]_{2}^{4}=2\left[4^{\frac{3}{2}}-2^{\frac{3}{2}}\right]=2\left[2^{3}-(\sqrt{2})^{3}\right] \\
& =2[8-2 \sqrt{2}]=(16-4 \sqrt{2}) \text { sq. units }
\end{aligned}
$$

3. Find the area of the region bounded by $x^{2}=4 y, y=2, y=4$ and the y-axis in the first quadrant.

Area of ABCD $=\int_{y=2}^{y=4} x d y$

$$
\begin{aligned}
& =\int_{y=2}^{y=4} 2 \sqrt{y} d y \\
& =2\left[\frac{2}{3} y^{\frac{3}{2}}\right]_{2}^{4} \\
& =\frac{4}{3}\left[x^{\frac{3}{2}}\right]_{2}^{4}=\frac{4}{3}\left[4^{\frac{3}{2}}-2^{\frac{3}{2}}\right]=\frac{4}{3}\left[2^{3}-(\sqrt{2})^{3}\right] \\
& =\frac{4}{3}[8-2 \sqrt{2}]=\left(\frac{32-8 \sqrt{2}}{3}\right) \text { sq units. }
\end{aligned}
$$

4. Find the area of the region bounded by the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$.

The given equation of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ can be represented as

It can be observed that the ellipse is symmetrical about x-axis and y-axis.
\therefore Area bounded by ellipse $=4 \times$ Area of OAB

$$
\begin{array}{rlr}
\text { Area } & =4 \times \int_{x=0}^{x=4} y d x \\
& =4 \times \frac{3}{4} \int_{0}^{4} \sqrt{16-x^{2}} d x & \| \frac{y^{2}}{9}=1-\frac{x^{2}}{16} \\
& =3\left[\frac{x}{2} \sqrt{16-x^{2}}+\frac{16}{2} \sin ^{-1}\left(\frac{x}{4}\right)\right]_{0}^{4} & \| y^{2}=\frac{9}{16}\left(16-x^{2}\right) \Rightarrow y=\frac{3}{4} \sqrt{16-x^{2}} \\
& =3\left[0+8 \sin ^{-1}(1)-\{0+0\}\right] & \\
& =24 \times \frac{\pi}{2}=12 \pi \text { sq. units. }
\end{array}
$$

5. Find the area of the region bounded by the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$

$$
\begin{array}{rlr}
\text { Area } & =4 \times \int_{x=0}^{x=2} y d x \\
& =4 \times \frac{3}{2} \int_{0}^{4} \sqrt{2^{2}-x^{2}} d x & \| \frac{y^{2}}{9}=1-\frac{x^{2}}{4} \\
& =6\left[\frac{x}{2} \sqrt{4-x^{2}}+\frac{4}{2} \sin ^{-1}\left(\frac{x}{2}\right)\right]_{0}^{2} & \| y^{2}=\frac{9}{4}\left(4-x^{2}\right) \Rightarrow y=\frac{3}{2} \sqrt{4-x^{2}} \\
& =6\left[0+2 \sin ^{-1}(1)-\{0+0\}\right] & \\
& =12 \times \frac{\pi}{2}=6 \pi \text { sq. units. }
\end{array}
$$

6. Find the area of the region in the first quadrant enclosed by x-axis, line $x=\sqrt{3} y$ and the circle

$$
x^{2}+y^{2}=4
$$

The point of intersection of the line and the circle in the first quadrant is $(\sqrt{3}, 1)$.
Area of the shaded portion $=$ Area $\triangle \mathrm{OCA}+$ Area ACB

$$
\begin{aligned}
& =\int_{0}^{\sqrt{3}}(y \text { of line }) d x+\int_{\sqrt{3}}^{2}(y \text { of circle }) d x \\
& =\int_{0}^{\sqrt{3}} \frac{1}{\sqrt{3}} x d x+\int_{\sqrt{3}}^{2} \sqrt{2^{2}-x^{2}} d x \\
& =\frac{1}{\sqrt{3}}\left[\frac{x^{2}}{2}\right]_{0}^{\sqrt{3}}+\left[\frac{x}{2} \sqrt{2^{2}-x^{2}}+\frac{2^{2}}{2} \sin ^{-1}\left(\frac{x}{2}\right)\right]_{\sqrt{3}}^{2} \\
& =\frac{1}{\sqrt{3}}\left[\frac{(\sqrt{3})^{2}}{2}-0\right]+\left[0+2 \sin ^{-1}(1)-\left\{\frac{\sqrt{3}}{2} \sqrt{2^{2}-(\sqrt{3})^{2}}+\frac{2^{2}}{2} \sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)\right\}\right] \\
& =\frac{\sqrt{3}}{2}+2 \times \frac{\pi}{2}-\left[\frac{\sqrt{3}}{2} \sqrt{1}+2 \times \frac{\pi}{3}\right] \\
& =\frac{\sqrt{3}}{2}+\pi-\frac{\sqrt{3}}{2}-\frac{2 \pi}{3}=\pi-\frac{2 \pi}{3}=\frac{3 \pi-2 \pi}{3}=\frac{\pi}{3} \text { sq.units }
\end{aligned}
$$

7. Find the area of the smaller part of the circle $x^{2}+y^{2}=a^{2}$ cut off by the line $x=\frac{a}{\sqrt{2}}$
The area of the smaller part of the circle, $x^{2}+y^{2}=a^{2}$, cut off by the line $x=\frac{a}{\sqrt{2}}$, is the area ABCDA.

Area $\mathrm{ABCD}=2 \times$ Area ABCA

$$
\begin{aligned}
& =2 \int_{\frac{a}{\sqrt{2}}}^{a} \sqrt{a^{2}-x^{2}} d x \\
& =2\left[\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1}\left(\frac{x}{a}\right)\right]_{\frac{a}{\sqrt{2}}}^{a} \\
& =2\left[\frac{a}{2}(0)+\frac{a^{2}}{2} \sin ^{-1}\left(\frac{a}{a}\right)-\left\{\frac{\frac{a}{\sqrt{2}}}{2} \sqrt{a^{2}-\left(\frac{a}{\sqrt{2}}\right)^{2}}+\frac{\left(\frac{a}{\sqrt{2}}\right)^{2}}{2} \sin ^{-1}\left(\frac{a}{\sqrt{2}}\right)\right]\right\} \\
& =2\left[\frac{a^{2}}{2} \times \frac{\pi}{2}-\left\{\frac{a}{2 \sqrt{2}} \sqrt{a^{2}-\frac{a^{2}}{2}}+\frac{a^{2}}{2} \sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)\right\}\right]
\end{aligned}
$$

$=2\left[\frac{\pi a^{2}}{4}-\left\{\frac{a}{2 \sqrt{2}} \frac{a}{\sqrt{2}}+\frac{a^{2}}{2} \times \frac{\pi}{4}\right\}\right]$
$=\frac{\pi a^{2}}{2}-\frac{a^{2}}{2}-\frac{\pi a^{2}}{4}=\frac{a^{2}}{2}\left(\pi-1-\frac{\pi}{2}\right)$
$=\frac{a^{2}}{2}\left(\pi-1-\frac{\pi}{2}\right)=\frac{a^{2}}{2}\left(\frac{\pi}{2}-1\right)$ sq. units.
8. The area between $x=y^{2}$ and $x=4$ is divided into two equal parts by the line $x=a$, find the value of a.

The line, $x=a$, divides the area bounded by the parabola and $x=4$ into two equal parts.
\therefore Area $\mathrm{OAD}=$ Area ABCD

It can be observed that the given area is symmetrical about x-axis.
\Rightarrow Area OED $=$ Area EFCD
$\int_{0}^{a} \sqrt{x} d x=\int_{a}^{4} \sqrt{x} d x$
$\left[x^{\frac{3}{2}}\right]_{0}^{a}=\left[x^{\frac{3}{2}}\right]_{a}^{4}$
$a^{\frac{3}{2}}=4^{\frac{3}{2}}-a^{\frac{3}{2}}$
$2 \times a^{\frac{3}{2}}=2^{3}=8$
$a^{\frac{3}{2}}=4 \Rightarrow a=4^{\frac{2}{3}}$
9. Find the area of the region bounded by the parabola and $y=x^{2}$ and $y=|x|$.

The given area is symmetrical about y-axis.
$y=x^{2}$ \qquad (1) is an upward parabola.

Substituting $y=|x|$ in (1)

$$
\begin{aligned}
& x^{2}=|x| \\
& x^{4}=x^{2} \Rightarrow x^{4}-x^{2}=0 \\
& \Rightarrow x^{2}\left(x^{2}-1\right)=0 \\
& \Rightarrow x=0 \text { or } x= \pm 1
\end{aligned}
$$

The point of intersection of parabola, $y=x^{2}$, and line, $y=|x|$, is A $(1,1)$.

10. Find the area bounded by the curve $x^{2}=4 y$ and the line $x=4 y-2$

The area bounded by the curve, $x^{2}=4 y$, and line, $x=4 y-2$, is represented by the shaded area OBAO.
Let the curves be $x^{2}=4 y$ \qquad (1) and $x=4 y-2$ \qquad
Solving, we have: $x+2=4 y$
Sub. in (1), $x^{2}=x+2 \Rightarrow x^{2}-x-2=0 \Rightarrow(x-2)(x+1)=0$
$\Rightarrow x=2$ and $x=-1$
when $x=2,2+2=4 y \Rightarrow y=\frac{4}{4}=1$
when $x=-1,-1+2=4 y \Rightarrow y=\frac{1}{2}$
\therefore co-ordinates of A and B are: $\left(-1, \frac{1}{2}\right)$ and $(2,1)$

\therefore The area of the shaded region $=\int_{-1}^{2}(y$ of line $-y$ of parabola $) d x$

$$
\begin{aligned}
& =\int_{-1}^{2}\left(\frac{x+2}{4}-\frac{x^{2}}{4}\right) d x \\
& =\frac{1}{4}\left[\frac{x^{2}}{2}+2 x-\frac{x^{3}}{3}\right]_{-1}^{2} \\
& =\frac{1}{4}\left[\frac{2^{2}}{2}+2(2)-\frac{2^{3}}{3}-\left\{\frac{(-1)^{2}}{2}+2(-1)-\frac{(-1)^{3}}{3}\right\}\right] \\
= & \frac{1}{4}\left[2+4-\frac{8}{3}-\left\{\frac{1}{2}-2+\frac{1}{3}\right\}\right] \\
= & \frac{1}{4}\left[6-\frac{8}{3}-\frac{1}{2}+2-\frac{1}{3}\right]=\frac{1}{4}\left[8-\frac{9}{3}-\frac{1}{2}\right] \\
= & \frac{1}{4}\left[5-\frac{1}{2}\right]=\frac{1}{4} \times \frac{9}{2}=\frac{9}{8} \text { sq. units. }
\end{aligned}
$$

11. Find the area of the region bounded by the curve $y^{2}=4 x$ and the line $x=3$

The region bounded by the parabola, $y^{2}=4 x$, and the line, $x=3$, is the area OACO.

\therefore The required $=2 \times \int_{0}^{3} y d x=2 \int_{0}^{3} 2 \sqrt{x} d x=4\left[\frac{2}{3} x^{\frac{3}{2}}\right]_{0}^{3}$

$$
=4 \times \frac{2}{3}\left[x^{\frac{3}{2}}\right]_{0}^{3}=\frac{8}{3}\left[3^{\frac{3}{2}}-0\right]=\frac{8}{3}\left[(\sqrt{3})^{3}\right]=\frac{8}{3} \times 3 \sqrt{3}=8 \sqrt{3} \text { sq.units }
$$

12. Area lying in the first quadrant and bounded by the circle $x^{2}+y^{2}=4$ and the lines $x=0$ and $x=2$ is
A. π
$\frac{\pi}{2}$
B. $\quad \frac{\pi}{3}$
C.
D.

The area bounded by the circle and the lines, $x=0$ and $x=2$, in the first quadrant is represented as

\therefore The required $=\int_{0}^{2} \sqrt{2^{2}-x^{2}} d x=\left[\frac{x}{2} \sqrt{2^{2}-x^{2}}+\frac{2^{2}}{2} \sin ^{-1}\left(\frac{x}{2}\right)\right]_{0}^{2}$

$$
=\left[0+2 \sin ^{-1}(1)-(0+0)\right]
$$

$$
=2 \times \frac{\pi}{2}=\pi \text { sq. units. }
$$

Ans: (A)
13. Area of the region bounded by the curve $y^{2}=4 x, y$-axis and the line $y=3$ is
A. 2
B. $\frac{9}{4}$
C. $\frac{9}{3}$
D. $\frac{9}{2}$

The area bounded by the curve, $y^{2}=4 x, y$-axis, and $y=3$ is represented as

Area of the shaded region $=\int_{0}^{3} x d y=\int_{0}^{3} \frac{y^{2}}{4} d y=\frac{1}{4}\left[\frac{y^{3}}{3}\right]_{0}^{3}$ $=\frac{1}{12}\left(3^{3}-0^{3}\right)=\frac{1}{12}(27)=\frac{9}{4}$ sq.units.

Ans: B.

Exercise 8.2

1. Find the area of the circle $4 x^{2}+4 y^{2}=9$ which is interior to the parabola $x^{2}=4 y$
$4 x^{2}+4 y^{2}=9 \ldots(1)$ is a circle passing through the origin and having radius $\frac{3}{2}$ units and $x^{2}=4 y$ \qquad (2) is an upward parabola.

In (1), we have, $4(4 y)+4 y^{2}=9 \Rightarrow 4 y^{2}+16 y-9=0$
$4 y^{2}+18 y-2 y-9=0 \Rightarrow 2 y(2 y+9)-1(2 y+9)=0$
$(2 y+9)(2 y-1)=0 \Rightarrow 2 y+9=0$ or $2 y-1=0$
$y=-\frac{9}{2}$ or $y=\frac{1}{2}$
But $y=-\frac{9}{2}$ is inadmissible. $\square y=\frac{1}{2}$
When $y=\frac{1}{2}, x^{2}=4\left(\frac{1}{2}\right)=2 \Rightarrow x= \pm \sqrt{2}$
\therefore the points of intersection of the circle and parabola are $\left(\sqrt{2}, \frac{1}{2}\right)$ and $\left(-\sqrt{2}, \frac{1}{2}\right)$.

The required area $=2 \times \int_{0}^{\sqrt{2}}\left[\sqrt{\left(\frac{3}{2}\right)^{2}-x^{2}}-\left(\frac{x^{2}}{4}\right)\right] d x$

$$
\begin{aligned}
& =2\left[\frac{x}{2} \sqrt{\left(\frac{3}{2}\right)^{2}-x^{2}}+\frac{\left(\frac{3}{2}\right)^{2}}{2} \sin ^{-1}\left(\frac{x}{\frac{3}{2}}\right)-\frac{1}{4} \times \frac{x^{3}}{3}\right]_{0}^{\sqrt{2}} \\
& =2\left[\frac{\sqrt{2}}{2} \sqrt{\left(\frac{3}{2}\right)^{2}-\sqrt{2}^{2}}+\frac{\left(\frac{3}{2}\right)^{2}}{2} \sin ^{-1}\left(\frac{\sqrt{2}}{\frac{3}{2}}\right)-\frac{1}{4} \times \frac{(\sqrt{2})^{3}}{3}-0\right]
\end{aligned}
$$

$$
=2\left[\frac{\sqrt{2}}{2} \sqrt{\frac{9}{4}-2}+\frac{9}{8} \sin ^{-1}\left(\frac{2 \sqrt{2}}{3}\right)-\frac{1}{4} \times \frac{2 \sqrt{2}}{3}\right]
$$

$$
=2\left[\frac{\sqrt{2}}{4}-\frac{2 \sqrt{2}}{12}+\frac{9}{8} \sin ^{-1}\left(\frac{2 \sqrt{2}}{3}\right)\right]
$$

$$
=2\left[\frac{3 \sqrt{2}}{12}-\frac{2 \sqrt{2}}{12}+\frac{9}{8} \sin ^{-1}\left(\frac{2 \sqrt{2}}{3}\right)\right]=\left[\frac{\sqrt{2}}{12}+\frac{9}{8} \sin ^{-1}\left(\frac{2 \sqrt{2}}{3}\right)\right]
$$

$$
=2 \times \frac{1}{2}\left[\frac{\sqrt{2}}{6}+\frac{9}{4} \sin ^{-1}\left(\frac{2 \sqrt{2}}{3}\right)\right]=\frac{\sqrt{2}}{6}+\frac{9}{4} \sin ^{-1}\left(\frac{2 \sqrt{2}}{3}\right) \text { sq. units. }
$$

2. Find the area bounded by curves $(x-1)^{2}+y^{2}=1$ and $x^{2}+y^{2}=1$
$(x-1)^{2}+y^{2}=1 \ldots \ldots . .(1)$ is a circle passing having centre $(1,0)$ and radius 1 unit and $x^{2}+y^{2}=1$.......... (2) is a circle passing through the origin and having radius 1 unit.

From (2), $y^{2}=1-x^{2}$ \qquad

Sub. in (1), we have, $(x-1)^{2}+1-x^{2}=1 \Rightarrow x^{2}-2 x+1+1-x^{2}=1$

$$
-2 x=0-1 \Rightarrow x=\frac{1}{2}
$$

When $x=\frac{1}{2}$, in (3), $y^{2}=1-\left(\frac{1}{2}\right)^{2}=1-\frac{1}{4}=\frac{3}{4} \Rightarrow y= \pm \frac{\sqrt{3}}{2}$
\therefore the points of intersection of the circles are $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ and $\left(\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$.

\therefore the required area $=2 \times \int_{0}^{\frac{1}{2}} \sqrt{1-(x-1)^{2}} d x+2 \int_{\frac{1}{2}}^{1} \sqrt{1-x^{2}} d x$

$$
=2 \times\left[\frac{(x-1)}{2} \sqrt{1-(x-1)^{2}}+\frac{1}{2} \sin ^{-1}(x-1)\right]_{0}^{\frac{1}{2}}+2\left[\frac{x}{2} \sqrt{1-x^{2}}+\frac{1}{2} \sin ^{-1} x\right]_{\frac{1}{2}}^{1}
$$

$$
=2 \times\left[\frac{\left(\frac{1}{2}-1\right)}{2} \sqrt{1-\left(\frac{1}{2}-1\right)^{2}}+\frac{1}{2} \sin ^{-1}\left(\frac{1}{2}-1\right)-\left\{0+\frac{1}{2} \sin ^{-1}(0-1)\right\}\right]
$$

$$
+2\left[0+\frac{1}{2} \sin ^{-1} 1-\left\{\frac{1}{4} \sqrt{1-\frac{1}{4}}+\frac{1}{2} \sin ^{-1}\left(\frac{1}{2}\right)\right\}\right]
$$

$$
=2\left[\frac{-1}{4} \sqrt{1-\frac{1}{4}}+\frac{1}{2} \sin ^{-1}\left(-\frac{1}{2}\right)-\frac{1}{2} \sin ^{-1}(-1)\right]
$$

$$
+2\left[\frac{1}{2}\left(\frac{\pi}{2}\right)-\frac{1}{4} \frac{\sqrt{3}}{2}-\frac{1}{2}\left(\frac{\pi}{6}\right)\right]
$$

$$
=2\left[\frac{-1}{4} \frac{\sqrt{3}}{2}+\frac{1}{2}\left(-\frac{\pi}{6}\right)-\frac{1}{2}\left(-\frac{\pi}{2}\right)\right]+2\left[\frac{\pi}{4}-\frac{1}{4} \frac{\sqrt{3}}{2}-\frac{\pi}{12}\right]
$$

$$
\begin{aligned}
& =2\left[\frac{-\sqrt{3}}{8}-\frac{\pi}{12}+\frac{\pi}{4}+\frac{\pi}{4}-\frac{\sqrt{3}}{8}-\frac{\pi}{12}\right] \\
& =2\left[\frac{\pi}{2}-\frac{\pi}{6}-\frac{2 \sqrt{3}}{8}\right]=2\left[\frac{\pi}{3}-\frac{\sqrt{3}}{4}\right] \\
& =\left[\frac{2 \pi}{3}-\frac{\sqrt{3}}{2}\right] \text { sq. units. }
\end{aligned}
$$

3. Find the area of the region bounded by the curves $y=x^{2}+2, y=x, x=0$ and $x=3$
$y=x^{2}+2 \ldots \ldots \ldots .$. (1) is an upward parabola and
when $x=0, y=0$
when $x=3, y=3^{2}+2=11$
And $y=x$
(2) is an identity function.
when $x=0, y=0$
when $x=3, y=3$

\therefore the required area $=\int_{0}^{3}\left(x^{2}+2-x\right) d x$

$$
\begin{aligned}
& =\left[\frac{x^{3}}{3}+2 x-\frac{x^{2}}{2}\right]_{0}^{3} \\
& =\left[\frac{3^{3}}{3}+2(3)-\frac{(3)^{2}}{2}-0\right]=9+6-\frac{9}{2} \\
& =15-\frac{9}{2}=\frac{30-9}{2}=\frac{21}{2} \text { sq. units }
\end{aligned}
$$

4. Using integration finds the area of the region bounded by the triangle whose vertices are $(-1,0)$, $(1,3)$ and $(3,2)$.

Equation of line segment AB is $\frac{x+1}{1+1}=\frac{y-0}{3-0} \Rightarrow \frac{x+1}{2}=\frac{y}{3} \Rightarrow y=\frac{3}{2}(x+1)$
Equation of line segment BC is $\frac{x-1}{3-1}=\frac{y-3}{2-3} \Rightarrow \frac{x-1}{2}=\frac{y-3}{-1} \Rightarrow y-3=-\frac{1}{2}(x-1)$

$$
\Rightarrow y=-\frac{1}{2}(x-1)+3=-\frac{1}{2}(x-1)+\frac{6}{2}=\frac{1}{2}[-x+1+6]=\frac{1}{2}(7-x)
$$

Equation of line segment AC is $\frac{x+1}{3+1}=\frac{y-0}{2-0} \Rightarrow \frac{x+1}{4}=\frac{y}{2} \Rightarrow y=\frac{1}{2}(x+1)$

$$
\text { Area of } \begin{aligned}
\triangle A B C & =\int_{-1}^{1}(y \text { of } A B) d x+\int_{1}^{3}(y \text { of } B C) d x+\int_{-1}^{3}(y \text { of } A C) d x \\
& =\int_{-1}^{1} \frac{3}{2}(x+1) d x+\int_{1}^{3}-\frac{1}{2}(7-x) d x-\int_{-1}^{3} \frac{1}{2}(x+1) d x \\
& =\frac{3}{2}\left[\frac{x^{2}}{2}+x\right]_{-1}^{1}+\frac{1}{2}\left[7 x-\frac{x^{2}}{2}\right]_{1}^{3}-\frac{1}{2}\left[\frac{x^{2}}{2}+x\right]_{-1}^{3} \\
& =\frac{3}{2}\left[\frac{1^{2}}{2}+1-\left\{\frac{(-1)^{2}}{2}+(-1)\right\}\right]+\frac{1}{2}\left[7(3)-\frac{(3)^{2}}{2}-\left\{7(1)-\frac{(1)^{2}}{2}\right\}\right] \\
& =\frac{3}{2}\left[\frac{1}{2}+1-\left\{\frac{1}{2}-1\right\}\right]+\frac{1}{2}\left[21-\frac{9}{2}-\left\{7-\frac{1}{2}\right\}\left[\frac{3^{2}}{2}+3-\left\{\frac{(-1)^{2}}{2}+(-1)\right\}\right]\right. \\
& \left.=\frac{3}{2}\left[\frac{1}{2}+3-\left\{\frac{1}{2}-1\right\}\right]\right] \\
& =\frac{3}{2}[2]+\frac{1}{2}[14-4]-\frac{1}{2}\left[21-\frac{9}{2}-7+\frac{1}{2}\right]-\frac{1}{2}\left[\frac{9}{2}+3-\frac{1}{2}+1\right] \\
& =3+5-4=4 \text { sq. units. }
\end{aligned}
$$

5. Using integration find the area of the triangular region whose sides have the equations $y=2 x+1$, $y=3 x+1$ and $x=4$.

On solving these equations, we obtain the vertices of triangle as: $\mathrm{A}(0,1), \mathrm{B}(4,13)$, and $\mathrm{C}(4,9)$.

$$
\text { Area of } \begin{aligned}
\triangle A B C & =\int_{0}^{4}(y \text { of } A B-y \text { of } A C) d x \\
& =\int_{0}^{4}[(3 x+1)-(2 x+1)] d x \\
& =\int_{0}^{4} x d x=\left[\frac{x^{2}}{2}\right]_{0}^{4} \\
& =\frac{16}{2}-0=8 \text { sq. units }
\end{aligned}
$$

6. Smaller area enclosed by the circle $x^{2}+y^{2}=4$ and the line $x+y=2$ is
A. $2(\pi-2)$
B. $\pi-2$
C. $2 \pi-1$
D. $2(\pi+2)$

The smaller area enclosed by the circle, $x^{2}+y^{2}=4$, and the line, $x+y=2$, is represented by the shaded area ACBA as

The required area $=\int_{0}^{2}\left[\sqrt{2^{2}-x^{2}}-(2-x)\right] d x$

$$
\begin{aligned}
& =\left[\frac{x}{2} \sqrt{2^{2}-x^{2}}+\frac{2^{2}}{2} \sin ^{-1}\left(\frac{x}{2}\right)-2 x+\frac{x^{2}}{2}\right]_{0}^{2} \\
& =\left[0+\frac{4}{2} \sin ^{-1}(1)-2(2)+\frac{(2)^{2}}{2}\right] \\
& =2 \times \frac{\pi}{2}-4+2 \\
& =(\pi-2) \text { sq. units. Thus, the correct answer is B. }
\end{aligned}
$$

7. Area lying between the curve $y^{2}=4 x$ and $y=2 x$ is
A. $\frac{2}{3}$
B. $\frac{1}{3}$
C. $\frac{1}{4}$
D. $\frac{3}{4}$

The area lying between the curve, $y^{2}=4 x$ and $y=2 x$, is represented by the shaded area OBAO as

The points of intersection of these curves are $\mathrm{O}(0,0)$ and $\mathrm{A}(1,2)$.
We draw AC perpendicular to x-axis such that the coordinates of C are $(1,0)$.
\therefore Required area $=\int_{0}^{1}(2 x-2 \sqrt{x}) d x$
$=\left[2 \frac{x^{2}}{2}-2 \times \frac{2}{3} x^{\frac{3}{2}}\right]_{0}^{1}$
$=\left[1-\frac{4}{3}\right]=\left|\frac{3-4}{3}\right|=\left|\frac{-1}{3}\right|=\frac{1}{3}$ sq. units
Thus, the correct answer is B.

