MATRICES AND DETERMINANTS MCQs

1. The value of
$$\begin{vmatrix} 1^2 & 2^2 & 3^2 \\ 2^2 & 3^2 & 4^2 & 5^2 \end{vmatrix}$$
 is
(a) 8 (b) -8 (c) 4 (d) 1 (e) 0
2. If $A^2 - A + 1 = 0$ Then the inverse of A is
(a) A^{-2} (b) $A + 1$ (c) $1 - A$ (d) $A - 1$ (e) A
3. The value of $\begin{vmatrix} a & a+b & a+2b \\ a+2b & a & a+b \\ a+b & a+2b & a \end{vmatrix}$ is equal to
(a) $9a^2(a+b)$ (b) $9b^2(a+b)$ (c) $a^2(a+b)$ (d) $b^2(a+b)$ (e) $9b^2(a-b)$
4. If A and B are square matrices of order 3 such that $|A| = -1, |B| = 3$, then the determinant value of the matrix 3AB is equal to
(a) 9 (b) -27 (c) -81 (d) 81 (e) 9
5. The matrix $\begin{bmatrix} 5 & 10 & 3 \\ -2 & -4 & 6 \\ -1 & -2 & b \end{bmatrix}$ is a singular matrix if $b =$
(a) -3 (b) 3 (c) 0 (d) for any value of b (e) for no value of b
6. For non singular square matrices A, B and C of the same order, $(AB^{-1}C)^{-1} =$
(a) $A^{-1}BC^{-1}$ (b) $C^{-1}B^{-1}A^{-1}$ (c) CBA^{-1} (d) $C^{-1}BA^{-1}$ (e) $C^{-1}BA$
7. Let $A = (\cos^2 0 \sin \theta \cos 0) \\ \cos \theta \sin \theta - \sin^2 \theta$ and $B = (\cos^2 \phi \sin \phi \cos \phi) \\ \cos \theta \sin \phi - \sin^2 \phi$ then $AB = 0$ if
(a) $\theta = n\phi, n = 0, 1, 2, ..., (b) \theta + \phi = n\pi, n = 0, 1, 2, ..., (c) \theta = \phi + (2n + 1)\frac{\pi}{2}, n = 0, 1, 2, ..., (d) \theta = \phi + n\frac{\pi}{2}, n = 0, 1, 2, ..., (d)$

(e)
$$\theta = \phi + 3n\frac{\pi}{2}, n = 0, 1, 2$$

8. Let $X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, A = \begin{pmatrix} 1 & -1 & 2 \\ 3 & 2 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 3 \\ 4 \\ 1 \end{pmatrix}$. If AX=B then X is equal to
(a) $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ (b) $\begin{pmatrix} -1 \\ -2 \\ 3 \end{pmatrix}$ (c) $\begin{pmatrix} -1 \\ -2 \\ -3 \end{pmatrix}$ (d) $\begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix}$ (e) $\begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}$
9. Let A and B are two square matrices such that AB=A and BA=B then $A^2 =$
(a) B (b) A (c) I (d) 0 (e) A^{-1}
10. The matrix $\begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 3 & -2 & 1 \end{bmatrix}$ is
(a) a scalar matrix (b) a symmetric matrix (c) a skew symmetric matrix
(d) an upper triangular matrix (e) None of these
11. If A, B and C are matrices of the same order, which of the following is not true
(a) $A + B = B + A$ (b) $A - B = B - A$ (c) $A + (B + C) = (A + B) + C$
(d) $k(A + B) = kA + kB$, k being a scalar (e) None of these
12. If A and B are matrices, the product AB exists only when
(a) A and B have the same order
(b) The number of rows in A equals the number of columns in B
(c) The number of columns of A equals the number of rows in B
(d) A and B are square matrices of the same order
(e) None of these
13. If $A = \begin{bmatrix} 3 & 6 \\ -1 & -2 \end{bmatrix}$, then $A^2 = \dots$
(a) 0 (b) A (c) $-A$ (d) I (e) None of these
14. If $A(\theta_k) = \begin{bmatrix} \cos \theta_k & -\sin \theta_k \\ \sin \theta_k & \cos \theta_k \end{bmatrix}$, $k = 1, 2$ then $A(\theta_1).(A(\theta_2) =$

HSSLIVE.IN

(a) $A(\theta 1 \times \theta 2)$	(b) A($\theta 1 - \theta 2$	2)	(c) A(θ 1+ θ 2)				
(d) $A(\theta 2 \times \theta 1)$	(e) None of th	nese					
15. If the product $AB \neq 0$	0 then						
(a) either $A = 0$ or B	B=0	(b) $A = 0$ and $B = 0$	0 (c) $A = 0, H$	$3 \neq 0$			
(d) A is symmetric a	and B is skew sy	ymmetric	(e) Neither A nor B	8 need be equal to zero			
16. If A is a square matr	tix, then $\mathbf{A} + \mathbf{B}^{\mathrm{T}}$	is					
(a) unit matrix	(b) null matrix	(c) symmetric mat	(c) symmetric matrix				
(d) skew symmetric	matrix (e)) None of these					
17. If $\begin{bmatrix} 5 & a+2 \\ a+1 & -2 \end{bmatrix} = \begin{bmatrix} a+2 \\ -3 \end{bmatrix}$	$\begin{bmatrix} +3 & 4 \\ 3 & -a \end{bmatrix}$, then a	=					
(a) 0 (i	b) 1	(c) -1	(d) 2	(e) -2			
18. A and B are matrices of order m x n and p x q respectively. They are conformable for addition and multiplication if and only if							
(a) $p = n$ (b	(a) $p = n$ (b) $m + p = n + q$ (c) $m + q = n + p$ (d) $m = n = p = q$						
(e) None of these							
(c). Note of these 19. If $\begin{bmatrix} x - y & x + y & 1 \\ 4 & 3 & 5 \\ x + z & x - z & -1 \end{bmatrix}$ (a) (3, -1, 2) (ft	is symmetric, t (3, 1, -2)	then (x, y, z) is	 (d) (3, -1, -2)	(e) (3, 1, 2)			
(d) (3, 1, 2) (k	,) (0, 1, 2)	(0) (0, 1, 2)	(d) (3, 1, 2)	(0) $(0, 1, 2)$			
20. If $\left[\cos\theta \sin\theta\right] \begin{bmatrix} \cos\theta\\ -\sin\theta \end{bmatrix} = [1]$, then $\theta = \dots$							
(a) $\pi/2$ (b)	o) π/4	(c) 2π	(d) π	(e) None of these			
21. If A is symmetric as well as skew symmetric, then A is							
(a) a diagonal matrix	X	(b) unit matrix	(c) null matrix				
(d) triangular matrix	X	(e) None of these					
22. If A and B are symmetric matrices of the same order, consider the statements							

	(a) all the statemen	ts are true	(b) (i) and (iii) a	are true ((c) (ii) and (iii	i) are true		
	(d) (i) alone is true	(e) none o	of these					
23.	If A and B are non	singular matrices	s of order 3 then	$(AB)^{-1} =$				
	(a) $A^{-1}B^{-1}$	(b) $B^{-1}A^{-1}$	(c) BA^{-1}	(d)	$B^{-1}A$	(e) None of these		
24.	If A is a square ma	trix such that A ²	= I, then A ⁻¹ =					
	(a) A	(b) 2A	(c) 0	(0	l) A + I	(e) None of these		
25.	25. If A and B are square matrices of order 3 such that $ A = -1$ and $ B = 3$, then det (3AB) is equal to							
	(a) –9	(b) –27	(c) -81	(d) 81		(e) None of these		
26.	A and B are 2 matr	rices with real num	mbers as elemen	ts. Which of	the following	g statements is false		
	(a) If AB is defined then BT AT is also defined							
	(b) If A and B are square matrices and AB is defined, then BA is also defined							
	(c) If A and B are of the same order then A + B and AB are defined							
	(d) If A and B are non singular matrices of the same order then AB is also non singular							
	(e) None of these							
27.	If A and B are squa	are matrices such	AB = A and BA	$\mathbf{A} = \mathbf{B}$ then				
	(a) A and B are idempotent (b) only A is idempotent							
	(c) only B is idempotent (d) AB is nilpotent of order 2 (e) none of these							
28.	28. If A is a square matrix, consider the following statements							
	(i) $A + A^T$ is skew	symmetric (ii	$) A - A^{T}$ is skew	v symmetric				
	(iii) A.A ^T is symmetric. Then							
	(a) all are true	(b) (i) and (ii) are true	(c) (ii)	and (iii) are	true		
	(d) (ii) alone is true (e) None of these							
29.	29. If A and B are square matrices of the same order such that $(A + B)^2 = A^2 + B^2 + 2AB$, then							
	(a) $AB = BA$	(b) $AB = I$	(c) $A = BT$	(d)	A + B = B +	A (e) None of		
	these							
30.	If A is a square ma	trix such that AA	$A^{T} = I = A^{T}A$, the	en A is				
	(a) symmetric	(b) skew sym	metric	(c) a d	iagonal matrix	x		
	(d) orthogonal	(e) None of the	nese					
31. If A is orthogonal, the $A^{-1} = \dots$								
	(a) A	(b) A ²	(c) $\mathbf{A}^{\mathbf{T}}$	(d) –	4	(e) None of these		

32. The inve	rse of a diag	onal matrix is							
(a) symn	netric	(b) skew symmetric			(c) a diagonal matrix				
(d) ortho	gonal	(e) None of the	ese						
33. If A is sy	33. If A is symmetric and n is a positive integer, A ⁿ is								
(a) sym	metric	(b) skew symmetric (c) diagonal							
(d) ortho	gonal	(e) None of these							
34. If A and B are symmetric matrices of the same order then AB – BA is									
(a) symn	netric (b)) skew symme	tric	(c)	orthogonal	(d) null matrix			
(e) None	e of these								
35. If A is a square matrix, then $adj(A^{T}) - (adj A)^{T}$ is equal to									
(a) A I	(b)	2 A I	(c) null matrix		(d) unit matrix	(e) None of these			
36. If each determin	element of ant is	a third order d	leterminant D is m	ultip	lied by 5, then t	he value of the new			
(a) D	(b)	5D	(c) 25D	(d)	125D	(e) None of these			
37. The value of the determinant $\begin{vmatrix} \cos 50^0 & \sin 10^0 \\ \sin 50^0 & \cos 10^0 \end{vmatrix}$ is equal to									
(a) 0	(b)) 1/2	(c) 1	(d)	$\sqrt{3}/2$	(e) None of these			
		2							