MATRICES AND DETERMINANTS MCQs

1. The value of $\left|\begin{array}{lll}1^{2} & 2^{2} & 3^{2} \\ 2^{2} & 3^{2} & 4^{2} \\ 3^{2} & 4^{2} & 5^{2}\end{array}\right|$ is
(a) 8
(b) -8
(c) 4
(d) 1
(e) 0
2. If $\mathrm{A}^{2}-\mathrm{A}+\mathrm{I}=0$ Then the inverse of A is
(a) A^{-2}
(b) $\mathrm{A}+\mathrm{I}$
(c) $\mathrm{I}-\mathrm{A}$
(d) $\mathrm{A}-\mathrm{I}$
(e) A
3. The value of $\left|\begin{array}{ccc}a & a+b & a+2 b \\ a+2 b & a & a+b \\ a+b & a+2 b & a\end{array}\right|$ is equal to
(a) $9 a^{2}(a+b)$
(b) $9 \mathbf{b}^{\mathbf{2}}(\mathrm{a}+\mathrm{b})$
(c) $\mathrm{a}^{2}(\mathrm{a}+\mathrm{b})$
(d) $\mathrm{b}^{2}(\mathrm{a}+\mathrm{b})$
(e) $9 b^{2}(a-b)$
4. If A and B are square matrices of order 3 such that $|A|=-1,|B|=3$, then the determinant value of the matrix 3 AB is equal to
(a) 9
(b) -27
(c) -81
(d) 81
(e) 9
5. The matrix $\left[\begin{array}{ccc}5 & 10 & 3 \\ -2 & -4 & 6 \\ -1 & -2 & b\end{array}\right]$ is a singular matrix if $\mathrm{b}=$
(a) -3
(b) 3
(c) 0
(d) for any value of b
(e) for no value of b
6. For non singular square matrices A, B and C of the same order, $\left(\mathrm{AB}^{-1} \mathrm{C}\right)^{-1}=$
(a) $\mathrm{A}^{-1} \mathrm{BC}^{-1}$
(b) $\mathrm{C}^{-1} \mathrm{~B}^{-1} \mathrm{~A}^{-1}$
(c) CBA^{-1}
(d) $\mathrm{C}^{-1} \mathrm{BA}^{-1}$
(e) $C^{-1} B A$
7. Let $\mathrm{A}=\left(\begin{array}{cc}\cos ^{2} \theta & \sin \theta \cos \theta \\ \cos \theta \sin \theta & \sin ^{2} \theta\end{array}\right)$ and $\mathrm{B}=\left(\begin{array}{cc}\cos ^{2} \phi & \sin \phi \cos \phi \\ \cos \phi \sin \phi & \sin ^{2} \phi\end{array}\right)$ then $A B=0$ if
(a) $\theta=n \phi, n=0,1,2 \ldots \ldots \ldots$
(b) $\theta+\phi=n \pi, n=, 01,2,3, \ldots$
(c) $\theta=\phi+(2 \mathrm{n}+1) \frac{\pi}{2}, \mathrm{n}=0,1,2, \ldots \ldots$
(d) $\theta=\phi+n \frac{\pi}{2}, n=0,1,2, \ldots \ldots$
(e) $\theta=\phi+3 n \frac{\pi}{2}, n=0,1,2$
8. Let $X=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right), A=\left(\begin{array}{ccc}1 & -1 & 2 \\ 2 & 0 & 1 \\ 3 & 2 & 1\end{array}\right)$ and $B=\left(\begin{array}{l}3 \\ 1 \\ 4\end{array}\right)$. If $A X=B$ then X is equal to
(a) $\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$
(b) $\left(\begin{array}{c}-1 \\ -2 \\ 3\end{array}\right)$
(c) $\left(\begin{array}{l}-1 \\ -2 \\ -3\end{array}\right)$
(d) $\left(\begin{array}{c}-1 \\ 2 \\ 3\end{array}\right)$
(e) $\left(\begin{array}{l}0 \\ 2 \\ 1\end{array}\right)$
9. Let A and B are two square matrices such that $\mathrm{AB}=\mathrm{A}$ and $\mathrm{BA}=\mathrm{B}$ then $A^{2}=$
(a) B
(b) A
(c) I
(d) 0
(e) A^{-1}
10. The matrix $\left[\begin{array}{rrr}1 & 0 & 0 \\ -2 & 1 & 0 \\ 3 & -2 & 1\end{array}\right]$ is
(a) a scalar matrix
(b) a symmetric matrix
(c) a skew symmetric matrix
(d) an upper triangular matrix
(e) None of these
11. If A, B and C are matrices of the same order, which of the following is not true
(a) $\mathrm{A}+\mathrm{B}=\mathrm{B}+\mathrm{A}$
(b) $\mathbf{A}-\mathbf{B}=\mathbf{B}-\mathbf{A}$
(c) $\mathrm{A}+(\mathrm{B}+\mathrm{C})=(\mathrm{A}+\mathrm{B})+\mathrm{C}$
(d) $k(A+B)=k A+k B, k$ being a scalar
(e) None of these
12. If A and B are matrices, the product $A B$ exists only when
(a) A and B have the same order
(b) The number of rows in A equals the number of columns in B
(c) The number of columns of A equals the number of rows in B
(d) A and B are square matrices of the same order
(e) None of these
13. If $A=\left[\begin{array}{rr}3 & 6 \\ -1 & -2\end{array}\right]$, then $A^{2}=$ \qquad
(a) 0
(b) \mathbf{A}
(c) -A
(d) I
(e) None of these
14. If $\mathrm{A}\left(\theta_{k}\right)=\left[\begin{array}{cc}\cos \theta_{\mathrm{k}} & -\sin \theta_{\mathrm{k}} \\ \sin \theta_{\mathrm{k}} & \cos \theta_{\mathrm{k}}\end{array}\right], \mathrm{k}=1,2$ then $\mathrm{A}\left(\theta_{1}\right) \cdot\left(\mathrm{A}\left(\theta_{2}\right)=\right.$
(a) $\mathrm{A}(\theta 1 \times \theta 2)$
(b) $\mathrm{A}(\theta 1-\theta 2)$
(c) $\mathbf{A}(\boldsymbol{\theta} \mathbf{1}+\boldsymbol{\theta} \mathbf{2})$
(d) $\mathrm{A}(\theta 2 \times \theta 1)$
(e) None of these
15. If the product $A B \neq 0$ then
(a) either $\mathrm{A}=0$ or $\mathrm{B}=0$
(b) $\mathrm{A}=0$ and $\mathrm{B}=0$
(c) $\mathrm{A}=0, \mathrm{~B} \neq 0$
(d) A is symmetric and B is skew symmetric
(e) Neither A nor B need be equal to zero
16. If A is a square matrix, then $\mathrm{A}+\mathrm{B}^{\mathrm{T}}$ is
(a) unit matrix
(b) null matrix
(c) symmetric matrix
(d) skew symmetric matrix
(e) None of these
17. If $\left[\begin{array}{cc}5 & a+2 \\ a+1 & -2\end{array}\right]=\left[\begin{array}{cc}a+3 & 4 \\ 3 & -a\end{array}\right]$, then $a=$
(a) 0
(b) 1
(c) -1
(d) 2
(e) -2
18. A and B are matrices of order $\mathrm{m} x \mathrm{n}$ and $\mathrm{p} \times \mathrm{q}$ respectively. They are conformable for addition and multiplication if and only if and only if
(a) $p=n$
(b) $\mathrm{m}+\mathrm{p}=\mathrm{n}+\mathrm{q}$
(c) $\mathrm{m}+\mathrm{q}=\mathrm{n}+\mathrm{p}$
(d) $\mathbf{m}=\mathbf{n}=\mathbf{p}=\mathbf{q}$
(e). None of these
19. If $\left[\begin{array}{ccc}x-y & x+y & 1 \\ 4 & 3 & 5 \\ x+z & x-z & -1\end{array}\right]$ is symmetric, then (x, y, z) is \qquad
(a) $(3,-1,2)$
(b) $(3,1,-2)$
(c) $(-3,1,2)$
(d) $(3,-1,-2)$
(e) $(3,1,2)$
20. If $[\operatorname{Cos} \theta \operatorname{Sin} \theta]\left[\begin{array}{c}\operatorname{Cos} \theta \\ -\operatorname{Sin} \theta\end{array}\right]=[1]$, then $\theta=\ldots \ldots \ldots \ldots$
(a) $\pi / 2$
(b) $\pi / 4$
(c) 2π
(d) π
(e) None of these
21. If A is symmetric as well as skew symmetric, then A is \qquad
(a) a diagonal matrix
(b) unit matrix
(c) null matrix
(d) triangular matrix
(e) None of these
22. If A and B are symmetric matrices of the same order, consider the statements
(i) $\mathrm{A}+\mathrm{B}$ is symmetric
(ii) $\mathrm{A}-\mathrm{B}$ is symmetric
(iii) AB is symmetric. Then
(a) all the statements are true
(b) (i) and (iii) are true
(c) (ii) and (iii) are true
(d) (i) alone is true (e) none of these
23. If A and B are non singular matrices of order 3 then $(A B)^{-1}=$
(a) $A^{-1} B^{-1}$
(b) $\mathrm{B}^{-1} \mathrm{~A}^{-1}$
(c) BA^{-1}
(d) $\mathrm{B}^{-1} \mathrm{~A}$
(e) None of these
24. If A is a square matrix such that $A^{2}=I$, then $A^{-1}=$
(a) A
(b) 2 A
(c) 0
(d) $\mathrm{A}+\mathrm{I}$
(e) None of these
25. If A and B are square matrices of order 3 such that $|A|=-1$ and $|B|=3$, then $\operatorname{det}(3 A B)$ is equal to
(a) -9
(b) -27
(c) $\mathbf{- 8 1}$
(d) 81
(e) None of these
26. A and B are 2 matrices with real numbers as elements. Which of the following statements is false
(a) If $A B$ is defined then BT AT is also defined
(b) If A and B are square matrices and AB is defined, then BA is also defined
(c) If A and B are of the same order then $A+B$ and $A B$ are defined
(d) If A and B are non singular matrices of the same order then $A B$ is also non singular
(e) None of these
27. If A and B are square matrices such $A B=A$ and $B A=B$ then
(a) A and B are idempotent
(b) only A is idempotent
(c) only B is idempotent
(d) AB is nilpotent of order 2
(e) none of these
28. If A is a square matrix, consider the following statements
(i) $A+A^{T}$ is skew symmetric
(ii) $\mathrm{A}-\mathrm{A}^{T}$ is skew symmetric
(iii) A.A ${ }^{T}$ is symmetric. Then
(a) all are true
(b) (i) and (ii) are true
(c) (ii) and (iii) are true
(d) (ii) alone is true
(e) None of these
29. If A and B are square matrices of the same order such that $(A+B)^{2}=A^{2}+B^{2}+2 A B$, then
(a) $\mathrm{AB}=\mathrm{BA}$
(b) $\mathrm{AB}=\mathrm{I}$
(c) $\mathrm{A}=\mathrm{BT}$
(d) $\mathrm{A}+\mathrm{B}=\mathrm{B}+\mathrm{A}$
(e) None of these
30. If A is a square matrix such that $A A^{T}=I=A^{T} A$, then A is
(a) symmetric
(b) skew symmetric
(c) a diagonal matrix
(d) orthogonal
(e) None of these
31. If A is orthogonal, the $\mathrm{A}^{-1}=$ \qquad
(a) A
(b) A^{2}
(c) A^{T}
(d) -A
(e) None of these
32. The inverse of a diagonal matrix is \qquad
(a) symmetric
(b) skew symmetric
(c) a diagonal matrix
(d) orthogonal
(e) None of these
33. If A is symmetric and n is a positive integer, A^{n} is \qquad
(a) symmetric
(b) skew symmetric
(c) diagonal
(d) orthogonal
(e) None of these
34. If A and B are symmetric matrices of the same order then $A B-B A$ is
(a) symmetric
(b) skew symmetric
(c) orthogonal
(d) null matrix
(e) None of these
35. If A is a square matrix, then $\operatorname{adj}\left(A^{T}\right)-(\operatorname{adj} A)^{T}$ is equal to \qquad
(a) $|\mathrm{A}| \mathrm{I}$
(b) $2|\mathrm{~A}| \mathrm{I}$
(c) null matrix
(d) unit matrix
(e) None of these
36. If each element of a third order determinant D is multiplied by 5 , then the value of the new determinant is
(a) D
(b) 5 D
(c) 25 D
(d) 125 D
(e) None of these
37. The value of the determinant $\left|\begin{array}{cc}\cos 50^{\circ} & \sin 10^{\circ} \\ \sin 50^{\circ} & \cos 10^{0}\end{array}\right|$ is equal to
(a) 0
(b) $1 / 2$
(c) 1
(d) $\sqrt{3} / 2$
(e) None of these
