Second year Higher Secondary Examination
 PART III
 MATHEMATICS (SCIENCE)
 MATRIX ALGEBRA
 Maximum: 30 (Scores)

All questions are compulsory.

1. Let $\mathrm{A}=\left[\begin{array}{lll}3 & 6 & 5 \\ 6 & 7 & 8\end{array}\right]$ and $\mathrm{C}=\left[\begin{array}{lll}3 & 6 & 5 \\ 6 & 7 & 8\end{array}\right]$ Find the matrix B such that $2 \mathrm{~A}+\mathrm{B}=3 \mathrm{C}$
2. If $\mathrm{A}=\left[\begin{array}{lll}5 & 3 & 10\end{array}\right]$ and $B=\left[\begin{array}{l}2 \\ 4 \\ 6\end{array}\right]$ then find AB
3. If $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$ and $f(x)=x^{2}-2 x-3$, find $\mathrm{f}(\mathrm{A})$.
4. Find the values of x, y and z from the following equations: $\left[\begin{array}{c}x+y+z \\ x+z \\ y+z\end{array}\right]=\left[\begin{array}{l}9 \\ 5 \\ 7\end{array}\right]$
5. A man buys 8 dozen mangoes, 10 dozen apples and 4 dozens bananas. Mangoes cost Rs. 18 per dozen, apples Rs. 9 per dozen and bananas Rs. 6 per dozen. Represent the quantities bought by a row matrix and the prices by a column matrix and obtain the total cost.
6. Let $\mathrm{A}=\left[\begin{array}{cc}2 & 4 \\ -1 & 1\end{array}\right]$. Using elementary row transformations, find the inverse of A .
7. Let $A=\left[\begin{array}{lll}1 & 2 & -3 \\ 2 & 1 & -1\end{array}\right]$ and $B=\left[\begin{array}{ll}2 & 3 \\ 5 & 4 \\ 1 & 6\end{array}\right]$
a) What is the order of $A B$?
b) Find A^{T} and B^{T}.
c) Verify that $(A B)^{T}=B^{T} \cdot A^{T}$
8. Consider the following statement:
$P(n): A^{n}=\left[\begin{array}{cc}1+2 n & -4 n \\ n & 1-2 n\end{array}\right]$ for all $\mathrm{n} \in \mathrm{N}$
a) Write $\mathrm{P}(1)$.
b) If $\mathrm{P}(\mathrm{k})$ is true, then show that $\mathrm{P}(\mathrm{k}+1)$ is true.
c) Show that $\mathrm{P}(\mathrm{n})$ is true for all positive integral values of $\mathrm{n} \in \mathrm{N}$.

Express $A=\left[\begin{array}{ccc}3 & 3 & -1 \\ -2 & -2 & 1 \\ -4 & -5 & 2\end{array}\right]$ as the sum of a symmetric and a skew-symmetric matrices.

