3. MATRIX ALGEBRA

1. Matrix was first introduced by Arthur Cayley in 1858. It was first used for the study of linear equations and linear transformations. Now it is largely used in disciplines like Physics, Chemistry, Statistics, and Engineering etc.
2. Matrix is an array of number arranged in rows and columns.
3. The numbers constituting a matrix is known as elements/members.
4. Matrices are denoted by capital letters of English alphabet and elements are denoted by small letters.
5. If a matrix has ' m ' rows and ' n ' columns its order is $\underline{m \times n}$ (read as ' m by n ').

$$
\text { E.g.: - } \quad A=\left[\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]_{2 \times 3} \quad B=\left[\begin{array}{cc}
0 & -2 \\
1 & 5
\end{array}\right]_{2 \times 2}
$$

6. In general, an $m \times n$ matrix is written as:

$$
\left[\begin{array}{cccccc}
a_{11} & a_{12} & \ldots & a_{1 j} & \ldots . & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 \mathrm{j}} & \ldots . & a_{2 n} \\
\ldots & \ldots & \ldots & \ldots & \ldots . & \ldots \\
a_{i 1} & a_{i 2} & \ldots & a_{i j} & \ldots & a_{i n} \\
\ldots & \ldots & \ldots . & \ldots & \ldots . & \ldots \\
a_{m 1} & a_{m 2} & \ldots & a_{m j} & \ldots & a_{m n}
\end{array}\right]
$$

Here $\left(\mathrm{a}_{\mathrm{ij}}\right)$ is the general element where

$$
\begin{aligned}
& i=1,2, \ldots \ldots \ldots, m \text { and } \\
& j=1,2,3, \ldots \ldots \ldots, n .
\end{aligned}
$$

Note: The double subscript ' ij ' is called the address of the element.

Types of matrices

1. Square Matrix: number of rows $=$ number of columns.
2. Zero Matrix: all elements are zeroes. It is denoted by ' O '.
3. Diagonal Matrix: a square matrix, having non-zero diagonal elements on the main diagonal.
4. Scalar Matrix: In a diagonal matrix, diagonal elements are same.
5. Identity Matrix: In a diagonal matrix, diagonal elements are unity. It is denoted by ' I '.
$I_{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right], I_{3}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$, etc.
6. Equality of Matrices: Two matrices are said to be equal if (a) they are of the same order (b) each elements of A $=$ corresponding element of B. i.e., $\left(\mathrm{a}_{i j}=b_{i j}\right)$
7. Upper Triangular Matrix: In a square matrix, all elements below the diagonal elements are zeroes.
8. Lower Triangular Matrix: In a square matrix, all elements above the diagonal elements are zeroes.
9. Row matrix: Matrix having only one row.
10. Column Matrix: Matrix having only one column.

Addition of matrices

Two matrices are conformable for addition if and only if they are of the same order. The sum matrix is got by adding the corresponding elements of both the matrices.
i.e., $\left[\mathrm{a}_{i j}\right]+\left[b_{i j}\right]=\left[\mathrm{a}_{i j}+b_{i j}\right]$, where $a_{i j}$ and $b_{i j}$ are matrices of the same order.

Scalar Multiplication of a matrix

Let A be a $\mathrm{m} \times \mathrm{n}$ matrix and ' m ' be a scalar (number). Then the scalar multiple of a matrix is obtained by multiplying all the elements of A by the scalar ' m '. i.e., if $A=\left[a_{i j}\right] \Rightarrow k A=\left[k a_{i j}\right]$.

Multiplication of matrices

Two matrices are conformable for multiplication if and only if the number of columns of $1^{\text {st }}$ matrix $=$ the number of rows of $2^{\text {nd }}$ matrix. The $1^{\text {st }}$ element in the $1^{\text {st }}$ row of the product matrix is obtained by taking the sum of the product of the corresponding elements of the $1^{\text {st }}$ row of the $1^{\text {st }}$ matrix to the corresponding elements of the $1^{\text {st }}$ column of the $2^{\text {nd }}$ matrix. The $2^{\text {nd }}$ element in the $1^{\text {st }}$ row of the product matrix is obtained by taking the sum of the product of the corresponding elements of the $1^{\text {st }}$ row of the $1^{\text {st }}$ matrix to the corresponding elements of the $2^{\text {nd }}$ column of the $2^{\text {nd }}$ matrix and so on.

$$
\begin{aligned}
& \text { Let } A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right] \quad B=\left[\begin{array}{ll}
2 & 3 \\
4 & 5 \\
1 & 2
\end{array}\right] \\
& A B=\left[\begin{array}{ll}
1 \times 2+2 \times 4+3 \times 1 & 1 \times 3+2 \times 5+3 \times 2 \\
4 \times 2+5 \times 4+6 \times 1 & 4 \times 3+5 \times 5+6 \times 2
\end{array}\right]=\left[\begin{array}{cc}
2+8+3 & 3+10+6 \\
8+20+6 & 12+25+12
\end{array}\right]=\left[\begin{array}{ll}
13 & 19 \\
34 & 49
\end{array}\right]
\end{aligned}
$$

Note : If matrix A is of order $m \times n$ and B is of order $p \times n$ then

$A B$ is possible and is of order $m \times n$.

Matrix polynomial
If $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\quad+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$ be a polynomial function and A be a square matrix of order ' n ', then $f(A)=a_{n} A^{n}+a_{n-1} A^{n-1}+a_{n-2} A^{n-2}+\quad+a_{3} A^{3}+a_{2} A^{2}+a_{1} A+a_{0}$ is known as matrix polynomial.

Note1: $A=\left[\begin{array}{ll}1 & 3 \\ 2 & 4\end{array}\right]$
then $A^{2}=A . A=\left[\begin{array}{ll}1 & 3 \\ 2 & 4\end{array}\right]\left[\begin{array}{ll}1 & 3 \\ 2 & 4\end{array}\right]=\left[\begin{array}{ll}1+6 & 3+12 \\ 2+8 & 6+16\end{array}\right]=\left[\begin{array}{cc}7 & 15 \\ 10 & 22\end{array}\right]$

Note2:
i. If $A^{2}=A$, then A is known as an idempotent matrix.
ii. If $A^{2}=I$, then A is known as an involuntary matrix
iii. If $A^{2}=0$, then A is known as a nilpotent matrix
E.g.: If $\mathrm{A}=\left[\begin{array}{ll}3 & -2 \\ 4 & -2\end{array}\right]$, and $\mathrm{I}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ find k so that $A^{2}=k A-2 I$.

$$
\begin{aligned}
& A^{2}=\left[\begin{array}{ll}
3 & -2 \\
4 & -2
\end{array}\right]\left[\begin{array}{ll}
3 & -2 \\
4 & -2
\end{array}\right]=\left[\begin{array}{cc}
9+-8 & -6+4 \\
12-8 & -8+4
\end{array}\right]=\left[\begin{array}{ll}
1 & -2 \\
4 & -4
\end{array}\right] \\
& k A=k\left[\begin{array}{ll}
3 & -2 \\
4 & -2
\end{array}\right]=\left[\begin{array}{ll}
3 k & -2 k \\
4 k & -2 k
\end{array}\right] \\
& 2 I=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]
\end{aligned}
$$

$$
A^{2}+2 I=k A \Rightarrow k A=A^{2}+2 I \Rightarrow\left[\begin{array}{cc}
3 k & -2 k \\
4 k & -2 k
\end{array}\right]=\left[\begin{array}{cc}
1 & -2 \\
4 & -4
\end{array}\right]+\left[\begin{array}{cc}
2 & 0 \\
0 & 2
\end{array}\right]
$$

$$
\left[\begin{array}{rr}
3 k & -2 k \\
4 k & -2 k
\end{array}\right]=\left[\begin{array}{rr}
3 & -2 \\
4 & -2
\end{array}\right] \Rightarrow k=1
$$

Transpose of a matrix

Interchange of rows and columns of a matrix is known as transpose matrix.
$\mathrm{A}=\left[\begin{array}{lll}2 & 3 & 1 \\ 3 & 2 & 5\end{array}\right]$, then A transpose, A^{T} or $A^{\prime}=\left[\begin{array}{ll}2 & 3 \\ 3 & 2 \\ 1 & 5\end{array}\right]$
Theorem: If A^{T} and B^{T} be the transposes of the matrices A and B respectively, then

- $\left(A^{T}\right)^{T}=A$
- $(k A)^{T}=k \cdot A^{T}$
- $(A+B)^{T}=A^{T}+B^{T}$
- $(A B)^{T}=B^{T} \cdot A^{T}$

Symmetric \& Skew Symmetric Matrices

A square matrix A is said to be symmetric if $A^{T}=A$ and skew-symmetric if $A^{T}=-A$.
Note: The diagonal elements of a skew-symmetric matrix are zeroes.

Tips

- If A and B are symmetric matrices, $(A B)^{T}=A B$, provided $A B=B A$
- If A is any square matrix, then $A+A^{T}$ is symmetric and $A-A^{T}$ is skew-symmetric.
- If A is any square matrix, then $A A^{T}$ and $A^{T} A$ both are symmetric matrices.
- If A is a symmetric matrix, then A^{n} is also symmetric.
- If A and B are symmetric matrices, $A B+B A$ is symmetric.
- If A and B are symmetric matrices of same order, then $A B-B A$ is symmetric.
- Every square matrix can be expressed the sum of two matrices of which one is symmetric and the other is skew-symmetric.

Elementary transformations

There are 6 elementary transformations -3 for row transformations and 3 for column transformations.

1. Interchanging a pair of rows or columns:
$R_{i} \leftrightarrow R_{j} \quad ; C_{i} \leftrightarrow C_{j}$
E.g.: i) $\left[\begin{array}{ll}2 & 5 \\ 1 & 4\end{array}\right] \sim\left[\begin{array}{ll}1 & 4 \\ 2 & 5\end{array}\right] \quad R_{1} \leftrightarrow R_{2}$
ii) $\left[\begin{array}{ll}2 & 1 \\ 3 & 4\end{array}\right] \sim\left[\begin{array}{ll}1 & 2 \\ 4 & 3\end{array}\right] \quad C_{1} \leftrightarrow C_{2}$
2. Multiplying each element of a row or column by a non-zero number:
$R_{i} \rightarrow k R_{i} \quad ; \quad C_{i} \rightarrow k C_{i}, \mathrm{k}$ is any scalar.
E.g.: i) $\left[\begin{array}{ll}2 & 6 \\ 4 & 2\end{array}\right] \sim\left[\begin{array}{ll}1 & 3 \\ 4 & 2\end{array}\right] \quad R_{1} \rightarrow \frac{1}{2} R_{1}$
ii) $\left[\begin{array}{ll}3 & 0 \\ 6 & 4\end{array}\right] \sim\left[\begin{array}{ll}1 & 0 \\ 2 & 4\end{array}\right] \quad C_{1} \rightarrow \frac{1}{3} C_{1}$
3. To each element of a row or column of a matrix, a multiple of another row or column is added,

$$
R_{i} \rightarrow R_{i}+k R_{j} \quad ; C_{i} \rightarrow C_{i}+k C_{j}
$$

E.g.: i) $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right] \sim\left[\begin{array}{cc}1 & 2 \\ 0 & -2\end{array}\right] \quad R_{2} \rightarrow R_{2}-3 R_{1}$
ii) $\left[\begin{array}{ll}1 & 2 \\ 3 & 5\end{array}\right] \sim\left[\begin{array}{cc}1 & 0 \\ 3 & -1\end{array}\right] \quad C_{2} \rightarrow C_{2}-2 C_{1}$

PROBLEMS

1. In the matrix $\left[\begin{array}{cccc}2 & 5 & 19 & -7 \\ 35 & -2 & \frac{5}{2} & 12 \\ \sqrt{3} & 1 & -5 & 17\end{array}\right]$, write:
(i) the order of the matrix (ii) the number of elements,
(iii) the elements $a_{13}, a_{21}, a_{33}, a_{24}, a_{23}$
(i) In the given matrix, the number of rows is 3 and the number of columns is 4 . Therefore, the order of the matrix is $\mathbf{3 \times 4}$.
(ii) Since the order of the matrix is 3×4, there are $3 \times 4=\mathbf{1 2}$ elements in it.
(iii) $a_{13}=19, a_{21}=35, a_{33}=-5, a_{24}=12, a_{23}=\frac{5}{2}$
2. If a matrix has 24 elements, what are the possible orders it can have? What, if it has 13 elements?

We know that if a matrix is of the order $m \times n$, it has $m n$ elements. The factors of 24 are: $1 \times 24,2 \times 12$, 3×8 and 4×6. Hence, the possible orders of a matrix having 24 elements are: $1 \times 24,24 \times 1,2 \times 12,12 \times$ $2,3 \times 8,8 \times 3,4 \times 6$, and 6×4

If it has 13 elements, the factors are 1×13 (13 is a prime number). Hence, the possible orders of a matrix having 13 elements are 1×13 and 13×1.
3. Construct a 3×4 matrix, whose elements are given by
$\begin{array}{ll}\text { (i) } a_{i j}=\frac{1}{2}|-3 i+j| & \text { ii) } a_{i j}=\frac{1}{2}|2 i-j|\end{array}$

In general, a 3×4 matrix is given by $A=\left[\begin{array}{llll}a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34}\end{array}\right]$
(i) $a_{i j}=\frac{1}{2}|-3 i+j|, i=1,2,3 ; j=1,2,3,4$

$$
\begin{aligned}
& a_{11}=\frac{1}{2}|-3+1|=\frac{1}{2}|-2|=1 \\
& a_{12}=\frac{1}{2}|-3+2|=\frac{1}{2}|-1|=\frac{1}{2}
\end{aligned}
$$

$$
a_{13}=\frac{1}{2}|-3+3|=\frac{1}{2}|0|=0
$$

$$
a_{14}=\frac{1}{2}|-3+4|=\frac{1}{2}|1|=\frac{1}{2}
$$

$$
a_{21}=\frac{1}{2}|-6+1|=\frac{1}{2}|-5|=\frac{5}{2}
$$

$$
a_{22}=\frac{1}{2}|-6+2|=\frac{1}{2}|-4|=2
$$

$$
a_{23}=\frac{1}{2}|-6+3|=\frac{1}{2}|-3|=\frac{3}{2}
$$

$$
a_{24}=\frac{1}{2}|-6+4|=\frac{1}{2}|-2|=1
$$

$$
a_{31}=\frac{1}{2}|-9+1|=\frac{1}{2}|-8|=4
$$

$$
a_{32}=\frac{1}{2}|-9+2|=\frac{1}{2}|-7|=\frac{7}{2}
$$

$$
a_{33}=\frac{1}{2}|-9+3|=\frac{1}{2}|-6|=3
$$

$$
a_{34}=\frac{1}{2}|-9+4|=\frac{1}{2}|-5|=-\frac{5}{2}
$$

Therefore, the required matrix is $A=\left[\begin{array}{cccc}1 & \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{5}{2} & 2 & \frac{3}{2} & 1 \\ 4 & \frac{7}{2} & 3 & \frac{5}{2}\end{array}\right]$
(ii) $a_{i j}=2 i-j, i=1,2,3 ; j=1,2,3,4$

$$
\begin{gathered}
a_{11}=2 \times 1-1=2-1=1 \\
a_{12}=2 \times 1-2=2-2=0
\end{gathered}
$$

$$
\begin{aligned}
& a_{13}=2 \times 1-3=2-3=-1 \\
& a_{14}=2 \times 1-4=2-4=-2 \\
& a_{21}=2 \times 2-1=4-1=3 \\
& a_{22}=2 \times 2-2=4-2=2 \\
& a_{23}=2 \times 2-3=4-3=1 \\
& a_{24}=2 \times 2-4=4-4=0 \\
& a_{31}=2 \times 3-1=6-1=5 \\
& a_{32}=2 \times 3-2=6-2=4 \\
& a_{33}=2 \times 3-3=6-3=3 \\
& a_{34}=2 \times 3-4=6-4=2
\end{aligned}
$$

Therefore, the required matrix is $A=\left[\begin{array}{cccc}1 & 0 & -1 & -2 \\ 3 & 2 & 1 & 0 \\ 5 & 4 & 3 & 2\end{array}\right]$
4. Find the value of x, y, and z from the following equation:
i) $\left[\begin{array}{ll}4 & 3 \\ x & 5\end{array}\right]=\left[\begin{array}{ll}y & z \\ 1 & 5\end{array}\right]$
ii) $\left[\begin{array}{cc}x+y & 2 \\ 5+z & x y\end{array}\right]=\left[\begin{array}{ll}6 & 2 \\ 5 & 8\end{array}\right]$
iii) $\left[\begin{array}{c}x+y+z \\ x+z \\ y+z\end{array}\right]=\left[\begin{array}{l}9 \\ 5 \\ 7\end{array}\right]$
(i) $\left[\begin{array}{ll}4 & 3 \\ x & 5\end{array}\right]=\left[\begin{array}{ll}y & z \\ 1 & 5\end{array}\right]$

If the given matrices are equal, their corresponding elements are also equal.
Comparing the corresponding elements, we get: $x=1, y=4$, and $z=3$
(ii) $\left[\begin{array}{cc}x+y & 2 \\ 5+z & x y\end{array}\right]=\left[\begin{array}{ll}6 & 2 \\ 5 & 8\end{array}\right]$

If the given matrices are equal, their corresponding elements are also equal.
Comparing the corresponding elements, we get:
$x+y=6$
$x y=8$
$5+z=5 \Rightarrow z=5-5=0$
We know that: $(x-y)^{2}=(x+y)^{2}-4 x y \Rightarrow(x-y)^{2}=(6)^{2}-4 \times 8 \Rightarrow(x-y)^{2}=36-32=4$
$\Rightarrow x-y= \pm 2$ \qquad
Now, when $x-y=2$ and $x+y=6$, we get $x=4$ and $y=2$

When $x-y=-2$ and $x+y=6$, we get $x=2$ and $y=4$
$\therefore x=4, y=2$, and $z=0$ or $x=2, y=4$, and $z=0$
(iii) $\left[\begin{array}{c}x+y+z \\ x+z \\ y+z\end{array}\right]=\left[\begin{array}{l}9 \\ 5 \\ 7\end{array}\right]$

If two matrices are equal, their corresponding elements are also equal.
Comparing the corresponding elements, we get:
$x+y+z=9$
$x+z=5$
$y+z=7$
From (1) and (2), we have:
$y+5=9 \Rightarrow y=4$
Then, from (3), we have:
$4+z=7 \Rightarrow z=3$
$\therefore x+z=5 \Rightarrow x=2$
$\therefore x=2, y=4$, and $z=3$
5. The number of all possible matrices of order 3×3 with each entry 0 or 1 is:
(A) 27
(B) 18
(C) 81
(D) 512

Number of Matrices $=(\text { Noofentries })^{m n}=2^{3 \times 3}=2^{9}=512$
The answer is D.
6. If $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$ and $f(x)=x^{2}-2 x-3$, find $\mathrm{f}(\mathrm{A})$
$A=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$ then $f(A)=A^{2}-2 A-3 I$,
$A^{2}=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]=\left[\begin{array}{ll}5 & 4 \\ 4 & 5\end{array}\right]$
$2 A=\left[\begin{array}{ll}2 & 4 \\ 4 & 2\end{array}\right] ; 3 I=\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right]$.
$f(A)=\left[\begin{array}{ll}5 & 4 \\ 4 & 5\end{array}\right]-\left[\begin{array}{ll}2 & 4 \\ 4 & 2\end{array}\right]-\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]=0$
7. If $\mathrm{A}=\left[\begin{array}{lll}5 & 3 & 10\end{array}\right]$ and $B=\left[\begin{array}{l}2 \\ 4 \\ 6\end{array}\right]$ then find AB
$A B=\left[\begin{array}{lll}5 & 3 & 10\end{array}\right]\left[\begin{array}{l}2 \\ 4 \\ 6\end{array}\right]=[5 \times 2+3 \times 4+10 \times 6]=[10+12+60]=[82]$
8. Let $A=\left[\begin{array}{lll}1 & 2 & -3 \\ 2 & 1 & -1\end{array}\right]$ and $B=\left[\begin{array}{ll}2 & 3 \\ 5 & 4 \\ 1 & 6\end{array}\right]$
a) What is the order of AB ?
b) Find A^{T} and B^{T}.
c) Verify that $(A B)^{T}=B^{T} \cdot A^{T}$
a) order of $A B$ is 2×2
b) $A^{T}=\left[\begin{array}{cc}1 & 2 \\ 2 & 1 \\ -3 & -1\end{array}\right]$ and $B^{T}=\left[\begin{array}{lll}2 & 5 & 1 \\ 3 & 4 & 6\end{array}\right]$
c) $A B=\left[\begin{array}{lll}1 & 2 & -3 \\ 2 & 1 & -1\end{array}\right]\left[\begin{array}{ll}2 & 3 \\ 5 & 4 \\ 1 & 6\end{array}\right]=\left[\begin{array}{cc}9 & -7 \\ 8 & 4\end{array}\right]$
$(A B)^{T}=\left[\begin{array}{cc}9 & 8 \\ -7 & 4\end{array}\right] \ldots \ldots \ldots(1)$
$B^{T} A^{T}=\left[\begin{array}{lll}2 & 5 & 1 \\ 3 & 4 & 6\end{array}\right]\left[\begin{array}{cc}1 & 2 \\ 2 & 1 \\ -3 & -1\end{array}\right]=\left[\begin{array}{cc}9 & 8 \\ -7 & 4\end{array}\right]$.
From (1) and (2) we have $(A B)^{T}=B^{T} A^{T}$.
9. Consider the following statement:
$P(n): A=\left[\begin{array}{cc}1+2 n & -4 n \\ n & 1-2 n\end{array}\right]$ for all $\mathrm{n} \in \mathrm{N}$
a) Write $\mathrm{P}(1)$.
b) If $\mathrm{P}(\mathrm{k})$ is true, then show that $\mathrm{P}(\mathrm{k}+1)$ is true.
c) Show that $\mathrm{P}(\mathrm{n})$ is true for all positive integral values of $\mathrm{n} \in \mathrm{N}$.

$$
\begin{aligned}
& . P(n): A^{n}=\left[\begin{array}{cc}
1+2 n & -4 n \\
n & 1-2 n
\end{array}\right] \\
& P(1): A^{1}=\left[\begin{array}{cc}
1+2 \times 1 & -4 \times 1 \\
1 & 1-2 \times 1
\end{array}\right]=\left[\begin{array}{ll}
3 & -4 \\
1 & -1
\end{array}\right]
\end{aligned}
$$

$\therefore \mathrm{P}(1)$ is true.
Assume that $\mathrm{P}(\mathrm{k})$ be true.
$P(k): A^{k}=\left[\begin{array}{cc}1+2 k & -4 k \\ k & 1-2 k\end{array}\right]$

To prove that $\mathrm{P}(\mathrm{k}+1)$ is true.

$$
\begin{aligned}
& P(k+1): A^{k+1}=\left[\begin{array}{cc}
1+2(k+1) & -4(k+1) \\
k+1 & 1-2(k+1)
\end{array}\right]=\left[\begin{array}{cc}
2 k+3 & -4 k-4 \\
k+1 & -1-2 k
\end{array}\right] \\
& \begin{aligned}
\text { LHS } & =A^{k+1}=A^{k} \cdot A=A^{k}=\left[\begin{array}{cc}
1+2 k & -4 k \\
k & 1-2 k
\end{array}\right]\left[\begin{array}{cc}
3 & -4 \\
1 & -1
\end{array}\right] \\
& =\left[\begin{array}{cc}
(1+2 k) 3+(-4 k) 1 & (1+2 k) \times-4+-4 k \times-1 \\
3 k+1-2 k & -4 k+-1(1-2 k)
\end{array}\right] \\
& =\left[\begin{array}{cc}
3+6 k-4 k & -4-8 k+4 k \\
k+1 & -4 k-1+2 k
\end{array}\right]=\left[\begin{array}{cc}
2 k+3 & -4 k-4 \\
k+1 & -1-2 k
\end{array}\right]=\text { RHS. }
\end{aligned}
\end{aligned}
$$

Hence $P(k+1)$ is true.
Hence $\mathrm{P}(\mathrm{n})$ is true for all values of $\mathrm{n} \in \mathrm{N}$.
10. The book shop of a particular school has 10 dozen chemistry books, 8 dozen physics books, 10 dozen economics books. Their selling prices are Rs. 80 , Rs. 60 and Rs. 40 respectively. Find the total amount the bookshop will receive from selling all the books using matrix algebra.

Let $A=\left[\begin{array}{lll}120 & 96 & 120\end{array}\right]\left[\begin{array}{l}80 \\ 60 \\ 40\end{array}\right]=[120 \times 80+96 \times 60+120 \times 40]$

$$
=[9600+5760+4800]=20160
$$

The total amount the bookshop will receive is Rs. 20,160 .
11. Using elementary transformation, find the inverse of $\left[\begin{array}{ll}1 & 5 \\ 3 & 4\end{array}\right]$.

$$
\begin{aligned}
& A=I A \Rightarrow\left[\begin{array}{ll}
1 & 5 \\
3 & 4
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] A \\
& R_{2} \rightarrow R_{2}-3 R_{1} \\
& {\left[\begin{array}{cc}
1 & 5 \\
0 & -11
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
-3 & 1
\end{array}\right] A} \\
& R_{2} \rightarrow \frac{1}{-11} R_{2} \\
& {\left[\begin{array}{ll}
1 & 5 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
\frac{3}{11} & -\frac{1}{11}
\end{array}\right] A} \\
& R_{1} \rightarrow R_{1}-5 R_{2} \\
& {\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
-\frac{4}{11} & \frac{5}{11} \\
\frac{3}{11} & -\frac{1}{11}
\end{array}\right] A \Rightarrow A^{-1}=\frac{1}{11}\left[\begin{array}{cc}
-4 & 5 \\
3 & -1
\end{array}\right]}
\end{aligned}
$$

Dear student, study all the notes and examples mentioned above thoroughly and answer all questions in the NCERT text. If you find any difficulty, please feel free to ask to your Maths teacher or just write to me through hsslive.in

Important questions as well as previous year's board questions of this chapter shall be given to you in the coming session.
by Remesh sir.

