

- **Empty relation** is the relation R in X given by $R = \phi \subset X \times X$.
- **Universal relation** is the relation R in X given by $R = X \times X$.
- Reflexive relation R in X is a relation with $(a,a) \in R \forall a \in X$.
- Symmetric relation R in X is a relation satisfying $(a,b) \in R$ implies $(b,a) \in R$.
- Transitive relation R in X is a relation satisfying $(a,b) \in R$ and $(b,c) \in R$ implies that $(a,c) \in R$.
- **Equivalence relation** R in X is a relation which is reflexive, symmetric and transitive.
- **Equivalence class** [a] containing $a \in X$ for an equivalence relation R in X is the subset of X containing all elements b related to a.
- A function $f: X \to Y$ is one-one (or injective) if $f(x_1) = f(x_2) \Rightarrow x_1 = x_2 \forall x_1, x_2 \in X$.
- A function $f: X \to Y$ is *onto* (or *surjective*) if given any $y \in Y$, $\exists x \in X$ such that f(x) = y.
- A function $f: X \to Y$ is one-one and onto (or bijective), if f is both one-one and onto.

- The *composition* of functions $f: A \to B$ and $g: B \to C$ is the function $gof: A \to C$ given by $gof(x) = g(f(x)) \forall x \in A$.
- A function $f: X \to Y$ is *invertible* if $\exists g: Y \to X$ such that gof = IX and fog = IY.
- A function $f: X \to Y$ is *invertible* if and only if f is one-one and onto.
- Given a finite set X, a function $f: X \to X$ is one-one (respectively onto) if and only if f is onto (respectively one-one). This is the characteristic property of a finite set. This is not true for infinite set
- A **binary operation** * on a set A is a function * from $A \times A$ to A.
- An element $e \in X$ is the *identity* element for binary operation*: $X \times X \to X$, if $a * e = a = e * a \forall a \in X$.
- An element $a \in X$ is **invertible** for binary operation $*: X \times X \to X$, if there exists $b \in X$ such that a*b=e=b*a where, e is the identity for the binary operation*. The element b is called **inverse** of a and is denoted by a^{-1} .
- An operation * on X is **commutative** if $a*b=b*a\forall a,b$ in X.
- An operation * on X is **associative** if $(a*b)*c=a*(b*c)\forall a,b,c$ in X.

PLUS TWO MATHEMATICS

1 RELATION AND FUNCTION

Question:

If a relation R on the set $\{1,2,3\}$ be defined by $R = \{1,2\}$, then R is

Answer:

R on the set $\{1,2,3\}$ be defined by R = $\{1,2\}$

R is not reflexive, transitive and symmetric

Question:

Show that the relation R in the set R of real numbers, defined as $R = \{(a,b) : a \le b^2\}$ is neither reflexive nor symmetric nor transitive.

Answer:

$$R = \left\{ (a,b) : a \le b^2 \right\}$$

It can be observed that $\left(\frac{1}{2}, \frac{1}{2}\right) \notin R$, since $\frac{1}{2} > \left(\frac{1}{2}\right)^2 = \frac{1}{4}$

:. R is not reflexive.

$$(1,3) \in \mathbb{R} \text{ as } 1 < 3^2$$

But 3 is not less than 12

$$\therefore$$
 (3,1) \notin R

:. R is not symmetric.

$$(3,2),(2,1.5) \in \mathbb{R}$$
 as $3 < 2^2 = 4$ and $2 < (1.5)^2 = 2.25$

But
$$3 > (1.5)^2 = 2.25$$

$$\therefore$$
 $(3,1.5) \notin R$

.. R is not transitive.

Hence, R is neither reflexive nor symmetric nor transitive.

Question:

What is the range of the function $f(x) = \frac{|x-1|}{|x-1|}, x \neq 1$

Answer:

Given,
$$f(x) = \frac{|x-1|}{x-1}$$

$$f(x) = \begin{cases} \frac{x-1}{x-1}, & x > 1 \\ -\frac{x-1}{x-1}, & x < 1 \end{cases} = \begin{cases} 1, & x > 1 \\ -1, & x < 1 \end{cases}$$

Range = $\{-1, 1\}$

Question:

Let $A = R - \{3\}$ and $B = R - \{3\}$. Consider the function $f: A \to B$ defined by $f(x) = \frac{x-2}{x-3}$. Is fone-one and onto? Justify your answer

Answer:

$$A = R - \{3\}$$
 and $B = R - \{3\}$

$$f: A \to B$$
 defined by $f(x) = \frac{x-2}{x-3}$

Let $x, y \in A$ such that f(x) = f(y)

$$\frac{x-2}{x-3} = \frac{y-2}{y-3}$$

$$(x-2)(y-3) = (y-2)(x-3)$$

$$xy-3x-2y+6 = xy-3y-2x+6$$

$$-3x-2y = -3y-2x$$

$$3x-2x = 3y-2y$$

$$x = y$$

:. R is one-one.

Let $y \in B = R - \{1\}$. Then, $y \ne 1$.

The function f is onto if there exists $x \in A$ such that f(x) = y.

$$f(x) = y$$

$$\frac{x-2}{x-3} = y$$

$$x-2 = y(x-3)$$

$$x-2 = xy-3y$$

$$x-xy = 2-3y$$

$$x(1-y) = 2-3y$$

$$x = \frac{2-3y}{(1-y)}$$

Thus, for any $y \in B$, there exists $\frac{2-3y}{(1-y)} \in A$ such that

$$f\left(\frac{2-3y}{1-y}\right) = \frac{\left(\frac{2-3y}{1-y}\right) - 2}{\left(\frac{2-3y}{1-y}\right) - 3}$$
$$= \frac{2-3y-2(1-y)}{2-3y-3(1-y)}$$
$$= \frac{2-3y-2+y}{2-3y-3+y} = y$$

∴ f is onto.

Hence the function is one-one and onto.

Question:

If $f(x) = 27x^3$ and $g(x) = x^{1/3}$, then find gof(x)

Answer:

Given,
$$f(x) = 27x^3$$
 and $g(x) = x^{1/3}$
 $gof(x) = g[f(x)]$
 $= g[27x^3]$
 $= (27x^3)^{1/3}$
 $= (27)^{1/3}(x^3)^{1/3}$
 $= \frac{3x}{2}$

Question:

If f,g: $R \to R$ be defined by f(x) = 2x + 1 and $g(x) = x^2 - 2$, $\forall x \in R$, respectively. Find gof.

Answer:

We have, f(x) = 2x + 1 and $g(x) = x^2 - 2, \forall x \in R$

$$gof = gf(x)$$

$$= g(2x+1)$$

$$= (2x+1)^{2} - 2$$

$$= 4x^{2} + 4x + 1 - 2$$

$$= 4x^{2} + 4x - 1$$

Question:

Let $A = R - \{3\}$, $B = R - \{1\}$. If $f : A \to B$ be defined by $f(x) = \frac{x-2}{x-3}, \forall x \in R$. Then show that f is bijective.

Answer:

Given
$$A = R - \{3\}, B = R - \{1\}$$

$$f: A \to B$$
 be defined by $f(x) = \frac{x-2}{x-3}, \forall x \in A$

$$f(x) = \frac{x-3+1}{x-3} = 1 + \frac{1}{x-3}$$

Let
$$f(x_1) = f(x_2)$$

$$1 + \frac{1}{x_1 - 3} = 1 + \frac{1}{x_2 - 3}$$
$$\frac{1}{x_1 - 3} = \frac{1}{x_2 - 3}$$

$$\mathbf{x}_1 = \mathbf{x}_2$$

So, f(x) is an injective function

Now let
$$y = \frac{x-2}{x-3}$$

 $x-2 = xy-3y$

$$x(1-y) = 2-3y$$
$$x = \frac{2-3y}{(1-y)}$$
$$y \in R - \{1\} = B$$

Hence f(x) is onto or subjective.

Hence f(x) is a bijective.

Question:

Consider f: $R_+ \rightarrow [-5, \infty]$ given by $f(x) = 9x^2 + 6x - 5$.

Show that f is invertible with $f^{-1}y = \left(\frac{\left(\sqrt{y+6}\right)-1}{3}\right)$

Answer:

Let
$$y = 9x^2 + 6x - 5$$

 $y = (3x)^2 + 6x + 1 - 1 - 5$
 $y = (3x + 1)^2 - 1 - 5 = (3x + 1)^2 - 6$
 $(3x + 1)^2 = y + 6$
 $3x + 1 = \sqrt{y + 6}$
 $3x = \sqrt{y + 6} - 1$
 $x = \frac{\sqrt{y + 6} - 1}{3}$

 \therefore f is onto, thereby range $f = [-5, \infty)$

Let us define g: $[-5,\infty) \to R_+$ as $g(y) = \frac{\sqrt{y+6}-1}{3}$

Now

$$(gof)(x) = g(f(x)) = g(9x^{2} + 6x - 5)$$

$$= g((3x + 1)^{2} - 6)$$

$$= \frac{\sqrt{(3x + 1)^{2} - 6 + 6} - 1}{3} = \frac{3x + 1 - 1}{3} = x$$

and (fog)(y) = f(g(y))

$$= \left[3\left(\frac{\sqrt{y+6}-1}{3}\right)+1\right]^2 - 6$$
$$= \left[\sqrt{y+6}-1+1\right]^2 - 6$$
$$= y+6-6 = y$$

$$\therefore$$
 gof = I_{R_+} and gof = $I_{[-5,\infty)}$

Hence, f is invertible and the inverse of f is given by

$$f^{-1}y = g(y) = \frac{\left(\sqrt{y+6}\right) - 1}{3}$$

Question:

Let * be binary operation defined on R by a * b = 1 + ab, $a,b \in R$. Then the operation * is

Answer:

Given $a * b = 1 + ab, a, b \in R$.

$$a * b = 1 + ab = b * a$$

So, * is a commutative binary operation

Now
$$a * (b * c) = a * (1 + bc) = 1 + a (1 + bc) = 1 + a + abc$$

Also
$$(a * b) * c = (1 + ab) * c = 1 + a(1 + ab)c = 1 + c + abc$$

∴ * is not associative.

Hence * is commutative but not associative.

Question:

Let $* R \times R \rightarrow R$ is defined as a * b = 2a + b. Find (2*3)*4.

Answer:

Given,
$$* R \times R \rightarrow R$$

$$a*b=2a+b$$

Put a = 2 and b = 3

So,
$$2*3 = 2(2) + 3 = 7$$

$$(2*3)*4 = 7*4 = 2(7)+4=14+4=18$$

Home work questions

Question: (March 2018)

If
$$f(x) = \frac{x}{x-1}$$
, $x \neq 1$.

- (a) Find fof (x)
- (b) Find the inverse of f.

Hint or Answer:

(a)
$$fof(x) = x$$
 (b) $\frac{x}{x-1}$

Question: (March 2018)

Let $A = N \times N$ and '*' be a binary operation on A defined by (a,b)*(c,d) = (a+c,b+d)

- (a) Find (1,2)*(2,3)
- (b) Prove that '*' is commutative
- (c) Prove that '*' is associative.

Hint or Answer:

(a) (3,5)

Question: (Imp 2017)

- (a) If (x+1, y-2)=(3, 1), write the values of x and y.
- (b) Let $A = \{1, 2, 3, 4, 5\}$ and $B = \{4, 6, 9\}$.

Define a relation $R: A \rightarrow B$ by

$$R = \{(x,y) : x - y \text{ is a positive integer}\}$$

Find A×B and write R in the roster form.

(c) Define the modulus function. What is its domain? Draw a rough sketch.

Hint or Answer:

(a) x=2, y=3 (b) $R=\{(5,4)\}$ (c)

Question: (March 2017)

- (a) Let R be a relation on $A = \{1,2,3\}$ by $R = \{(1,3),(3,1),(2,2)\}$ R is Reflexive, Symmetric, Transitive, Reflexive but not transitive
- (b) Find fog and gof if f(x) = |x+1| and g(x) = 2x-1.
- (c) Let * be a binary operation defined on N×N by (a,b)*(c,d) = (a+c,b+d)
 Find the identity element for * if it exists.

Hint or Answer:

- (a) Symmetric
- (b) $\log(x) = |2x|, gof(x) = |2x+1|-1$
- (c) identity element does not exist.

Question: (Imp 2016)

- (a) If $f:R \to R$ and $g:R \to R$ defined by $f(x) = x^2$ and g(x) = x + 1, then gof(x) is
- (b) Consider the function $f:N \to N$ given by $f(x) = x^3$. Show that the function f is injective but not surjective.
- (c) The given table shows an operation * on $A = \{p,q\}$

q p q

- (i) ls *a binary operation on A?
- (ii) Is * commutative? Give reason.

Hint or Answer:

(a) $x^2 + 1$ (b) injective, not surjective (c) (i) Yes (ii) No

Question: (March 2016)

- (a) The function $f: N \to N$, given by f(x) = 2x is
 - (a) one-one and onto
 - (b) one-one but not onto
 - (c)not one-one and not onto
 - (d)onto but not one-one

Find gof (x), if f(x) = $8x^3$ and g(x) = $x^{1/3}$.

(b) Let * be a binary operation such that a * b = LCM of a and b defined on the set $A = \{1, 2, 3, 4, 5\}$. Is *a binary operation? Justify your answer.

Answer:

(a) one-one and but not onto

Prepared By Fassal Peringolam Calicut

www.sciencetablet.in