CHAPTER 1

RELATIONS AND FUNCTION

SAY 2018

1. Consider the relation R in the set N of natural numbers defined as

 $R = \{(a,b): ab \text{ is a factor of } 6\}.$ Determine whether the relation is reflexive, symmetric or transitive. (3)

- 2. Consider the binary operation * on the set R of real numbers, defined real numbers , defined by
 - $a * b = \frac{ab}{4}.$
 - a) Prove that * is commutative and associative
 - b) Find the identity element of * on R (1) c) Find the inverse of 5 (1)
 - c) Find the inverse of 5. (1)
- 3. Let $A = N \times N$ and * be a binary operation on A defined by (a,b)*(c,d)=(a+c,b+d)
 - a) Find (1,2)*(2,3) (1)
 - b) Prove that * is commutative. (1)
 - c) Prove that * is commutative. (2)

MARCH 2018

- 4. If $f(x) = \frac{x}{x-1}, x \neq 1$ a) Find fof (x) (2)
 - b) Find the inverse of f. (1)
- 5. Let $A = N \times N$ and * be a binary operation on A defined by (a,b)*(c,d)=(a+c,b+d)
 - a) Find (1,2)*(2,3) (1)

- b) Prove that * is commutative. (1)
- c) Prove that * is commutative. (2)

SAY 2017

- 6. a) If R = {(x, y): x, y ∈ Zx y ∈ Z}, then the relation R is
 a) Reflexive but not transitive
 b) Reflexive but not symmetric
 c) Symmetric but not transitive
 d) an Equivalence relation (1)
 b) Let * be a binary operation on the set Q of
 - b) Let * be a binary operation on the set Q of rational numbers by a * b = 2a + bFind 2 * (3 * 4) and (2 * 3) * 4 (2)
 - c) Let $f: R \to R, g: R \to R$ be two one- one function. Check whether gof is one-one or not. (2)

MARCH 2017

(2)

- 7. a) Let R be a relation defined on $A = \{1,2,3\}$ by $R = \{(1,3), (3,1), (2,2)\}$. R is
 - a) Reflexive b) Symmetric c) Transitive d) Reflexive but not transitive (1)
 - b) Find fog and gof if f(x) = |x+1| and g(x) = 2x - 1 (2)
 - c) Let * be a binary operation defined on $N \times N$ by (a,b)*(c,d)=(a+c,b+d). Find the identity element for * if it exists. (2)

SAY 2016

8. a) If
$$f: R \to R$$
 and $g: R \to R$ defined by
 $f(x) = x^2$ and $g(x) = x + 1$, then $gof(x)$ is
i) $(x + 1)^2$ ii) $x^3 + 1$
iii) $x^2 + 1$ iv) $x + 1$ (1

Teaching Mathematics since 1990

- b) Consider the function $f: N \to N$, given by $f(x) = x^3$. Show that the function f is injective but not surjective. (2)
- c) The given table shown an operation * on $A = \{p,q\}$

*	р	q
р	р	q
q	р	q

- i) Is * a binary operation on A?
- ii) Is * commutative? Give reason. (2)

MARCH 2016

9. a) The function given $f: N \to N$, by

f(x) = 2x is

- i. one-one and ontoii. one-one but not ontoiii. not one-one and not onto
- iv. onto, but not one-one
- b) Find gof(x), if $f(x) = 8x^3$ and $g(x) = x^{1/3}$. (2)
- c) Let * be an operation such that a*b = LCM of a and b defined on the set $A = \{1,2,3,4,5\}$. Is * binary operation? Justify your answer. (2)

SAY 2015

- 10. a) When a relation R on set A is said to be reflexive? (1)
 - b) Find *gof* and *fog*, if $f(x) = 8x^3$ and

$$g(x) = x^{\overline{3}}.$$
 (2)

c) Show that $f:[-1,1] \rightarrow R$ is given by

$$f(x) = \frac{x}{x+2}$$
 is one-one. (2)

2015 MARCH

- 11. a) What is the minimum number of ordered pairs to form a non-zero reflexive relation on a set of n elements? (1)
 - b) On the set \mathbb{R} of real numbers, S is a relation defined as

 $S = \{(x, y) \mid x \in \mathbb{R}, y \in \mathbb{R}, x + y = xy\}.$ Find

 $a \in \mathbb{R}$ such that 'a' is never the first element of an ordered pair is S. Also find $b \in \mathbb{R}$ such that 'b' is never the second element of an ordered pair is S. (2)

c) Consider the function $f(x) = \frac{3x+4}{x-2}, x \neq 2$.

Find a function g(x) on a suitable domain

such that (gof)(x) = x = (fog)(x). (2)

SAY 2014

(1)

- 12. a) Let $f: R \to R$ be given by $f(x) = \frac{2x+1}{3}$. Find *fof* and show that *f* is invertible. (2)
 - b) Find the identity element of the binary operation * on N defined by $a * b = ab^2$. (2)

MARCH 2014

13. a) Let R be the relation on the set N of the natural numbers given by

 $R = \{(a,b): a-b > 2, b > 3\}.$ Choose the correct answer. (1) A) $(4,1) \in R$ B) $(5,8) \in R$ C) $(8,7) \in R$ D) $(10,6) \in R$ b) If $f(x) = 8x^3$ and $g(x) = x^{1/3}$, Find g(f(x)) and f(g(x)). (2) c) Let * be a binary operation on the set Q of rational numbers defined by $a * b = \frac{ab}{3}$. Check whether * is commutative and associative? (2)

Teaching Mathematics since 1990

SAY 2013

14. Consider the set $A = \{1, 2, 3, 4, 5\},\$

 $B = \{1, 4, 9, 16, 25\}$ and a function $f : A \to B$

defined by f(1) = 1, f(3) = 9, f(4) = 16 and

$$f(5) = 25$$

- a) Show that f is one-to-one. (2)
- b) Show that f is onto. (2)
- c) Does f^{-1} exist? Explain. (1)

MARCH 2013

15. Consider
$$f: R \to R$$
 given by $f(x) = 5x + 2$.

- a) Show that f is one-to-one. (1)
- b) Is f invertible? Justify your answer. (2)
- c) Let * be a binary operation on N defined by a*b = HCF of a and b.

i) Is * commutative? (1)

ii) Is * associative? (1)

SAY 2012

- 16. i) $*: R \times R \to R$ is given by $a*b=3a^2-b$. Find the value of 2*3. Is * commutative? Justify your answer . (2)
 - ii) If $f: R \to R$ is defined by $f(x) = x^2 - 3x + 2$, find (fof)(x) and (fof)(1). (3)

MARCH 2012

17. a) Give an example of a relation on a set $A = \{1, 2, 3, 4\}$, which is reflexive, symmetric but not transitive. (1)

b) Show that
$$f:[-1,1] \rightarrow R$$
 is given by

$$f(x) = \frac{x}{x+2}$$
 is one-one. (2)

c) Let * be a binary operation on Q^+ defined by $a * b = \frac{ab}{6}$. Find inverse of 9 with respect to *. (2)

SAY 2011

18. Let N be the set of natural numbers. Consider the function $f: N \rightarrow N$ defined by

$$f(x) = x + 1, x \in N$$

a) Prove that f is not an onto function. (2)

b) If
$$g(x) = \begin{cases} x-1 & if \quad x > 1 \\ 1 & if \quad x = 1 \end{cases}$$
, then

find gof.

c) Check whether gof is an onto function. (1)

(2)

MARCH 2011

1

9. (a) i)
$$f: \{1, 2, 3, 4\} \rightarrow \{5\}$$
 defined by
 $f = \{(1, 5), (2, 5), (3, 5), (4, 5)\}$.
Does the function f invertible? (1)
ii) $A = R - \left\{\frac{7}{5}\right\} B = R - \left\{\frac{3}{5}\right\} f: A \rightarrow B$
defined by $f(x) = \frac{3x+4}{5x-7}$. $g: B \rightarrow A$
defined by $g(y) = \frac{7y+4}{5y-3}$.
Find gof. (2)

(b) Let $A = N \times N$ (N-set of natural nos.) and * be a binary operation on A defined by (a,b)*(c,d) = (ac-bd, ad+bc). Show that * is commutative on A. (2)

Teaching Mathematics since 1990

SAY 2010

- 20. Let $f(x) = \frac{x-1}{x-3}, x \neq 3$ and $g(x) = \frac{x-3}{x-1}, x \neq 1$ be two real valued functions defined on R.
 - a) Find $(fog)(x), x \neq 0$ (1)
 - b) Find $f^{-1}(x)$ and $g^{-1}(x), x \neq 1$ (2)
 - c) Find $(gof)^{-1}(x)$ (2)

Don't read success stories, You will get only message..

Read failure stories, You will get some ideas to get success..!!

