CHAPTER 1

RELATIONS AND FUNCTION

SAY 2018

1. Consider the relation R in the set N of natural numbers defined as
$R=\{(a, b): a b$ is a factor of 6$\}$. Determine whether the relation is reflexive, symmetric or transitive.
2. Consider the binary operation * on the set R of real numbers, defined real numbers, defined by $\mathrm{a} * \mathrm{~b}=\frac{a b}{4}$.
a) Prove that $*$ is commutative and associative
b) Find the identity element of * on R
c) Find the inverse of 5 .
3. Let $A=N \times N$ and $*$ be a binary operation on A defined by $(a, b) *(c, d)=(a+c, b+d)$
a) Find $(1,2) *(2,3)$
b) Prove that $*$ is commutative.
c) Prove that $*$ is commutative.

MARCH 2018

4. If $f(x)=\frac{x}{x-1}, x \neq 1$
a) Find $f \circ f(x)$
b) Find the inverse of f.
5. Let $A=N \times N$ and $*$ be a binary operation on A defined by $(a, b) *(c, d)=(a+c, b+d)$
a) Find $(1,2) *(2,3)$
b) Prove that $*$ is commutative.
c) Prove that $*$ is commutative.

SAY 2017

6. a) If $R=\{(x, y): x, y \in Z x-y \in Z\}$, then the relation R is
a) Reflexive but not transitive
b) Reflexive but not symmetric
c) Symmetric but not transitive
d) an Equivalence relation
b) Let * be a binary operation on the set Q of rational numbers by $a * b=2 a+b$
Find $2 *(3 * 4)$ and $(2 * 3) * 4$
c) Let $f: R \rightarrow R, g: R \rightarrow R$ be two one- one function. Check whether gof is one-one or not.

MARCH 2017

7. a) Let R be a relation defined on $A=\{1,2,3\}$ by $R=\{(1,3),(3,1),(2,2)\} . \mathrm{R}$ is
a) Reflexive
b) Symmetric
c) Transitive
d) Reflexive but not
b) Find fog and gof if $f(x)=|x+1|$ and $g(x)=2 x-1$
c) Let $*$ be a binary operation defined on Find the identity element for $*$ if it exists.

SAY 2016

8. a) If $f: R \rightarrow R$ and $g: R \rightarrow R$ defined by $f(x)=x^{2}$ and $g(x)=x+1$, then $g o f(x)$ is
i) $(x+1)^{2}$
ii) $x^{3}+1$
iii) $x^{2}+1$
iv) $x+1$
(1)
b) Consider the function $f: N \rightarrow N$, given by $f(x)=x^{3}$. Show that the function f is injective but not surjective.
c) The given table shown an operation * on $A=\{p, q\}$

$*$	p	q
p	p	q
q	p	q

i) Is * a binary operation on A?
ii) Is $*$ commutative? Give reason.

MARCH 2016

9. a) The function given $f: N \rightarrow N$, by
$f(x)=2 x$ is
i. one-one and onto
ii. one-one but not onto
iii. not one-one and not onto
iv. onto, but not one-one
b) Find $g o f(x)$, if $f(x)=8 x^{3}$ and $g(x)=x^{1 / 3}$.
c) Let * be an operation such that
$a * b=L C M$ of a and b defined on the set $A=\{1,2,3,4,5\}$. Is $*$ binary operation? Justify your answer.

SAY 2015

10. a) When a relation R on set A is said to be reflexive?
b) Find $g o f$ and $f \circ g$, if $f(x)=8 x^{3}$ and $g(x)=x^{\frac{1}{3}}$.
c) Show that $f:[-1,1] \rightarrow R$ is given by $f(x)=\frac{x}{x+2}$ is one-one.

2015 MARCH

11. a) What is the minimum number of ordered pairs to form a non-zero reflexive relation on a set of n elements?
b) On the set \mathbb{R} of real numbers, S is a relation defined as
$S=\{(x, y) \mid x \in \mathbb{R}, y \in \mathbb{R}, x+y=x y\}$. Find
$a \in \mathbb{R}$ such that ' a ' is never the first element of an ordered pair is S . Also find $b \in \mathbb{R}$ such that ' b ' is never the second element of an ordered pair is S .
c) Consider the function $f(x)=\frac{3 x+4}{x-2}, x \neq 2$.

Find a function $g(x)$ on a suitable domain such that $(g \circ f)(x)=x=(f o g)(x)$.

SAY 2014

12. a) Let $f: R \rightarrow R$ be given by $f(x)=\frac{2 x+1}{3}$.

Find $f o f$ and show that f is invertible.
b) Find the identity element of the binary operation $*$ on N defined by $a * b=a b^{2}$.

MARCH 2014

13. a) Let R be the relation on the set N of the natural numbers given by

$$
\begin{equation*}
R=\{(a, b): a-b>2, b>3\} . \text { Choose the } \tag{1}
\end{equation*}
$$ correct answer.

A) $(4,1) \in R$
B) $(5,8) \in R$
C) $(8,7) \in R$
D) $(10,6) \in R$
b) If $f(x)=8 x^{3}$ and $g(x)=x^{1 / 3}$,

Find $g(f(x))$ and $f(g(x))$.
c) Let * be a binary operation on the set Q of rational numbers defined by $a * b=\frac{a b}{3}$.
Check whether * is commutative and associative?

SAY 2013
14. Consider the set $A=\{1,2,3,4,5\}$, $B=\{1,4,9,16,25\}$ and a function $f: A \rightarrow B$ defined by $f(1)=1, f(3)=9, \quad f(4)=16$ and $f(5)=25$
a) Show that f is one-to-one.
b) Show that f is onto.
c) Does f^{-1} exist? Explain.

MARCH 2013

15. Consider $f: R \rightarrow R$ given by $f(x)=5 x+2$.
a) Show that f is one-to-one.
b) Is f invertible? Justify your answer.
c) Let * be a binary operation on N defined by $a * b=H C F$ of a and b.
i) Is * commutative?
ii) Is $*$ associative?

SAY 2012

16. i) $*: R \times R \rightarrow R$ is given by $\mathrm{a}^{*} \mathrm{~b}=3 \mathrm{a}^{2}-\mathrm{b}$. Find the value of $2 * 3$. Is * commutative? Justify your answer .
ii) If $f: R \rightarrow R$ is defined by $f(x)=x^{2}-3 x+2$, find $(f o f)(x)$ and $(f o f)(1)$.

MARCH 2012

17. a) Give an example of a relation on a set
$A=\{1,2,3,4\}$, which is reflexive, symmetric but not transitive.
b) Show that $f:[-1,1] \rightarrow R$ is given by $f(x)=\frac{x}{x+2}$ is one-one.
c) Let $*$ be a binary operation on Q^{+}defined by $a * b=\frac{a b}{6}$. Find inverse of 9 with respect to *.

SAY 2011

18. Let N be the set of natural numbers. Consider the function $f: N \rightarrow N$ defined by

$$
\begin{equation*}
f(x)=x+1, x \in N \tag{2}
\end{equation*}
$$

a) Prove that f is not an onto function.
b) If $g(x)=\left\{\begin{array}{ccc}x-1 & \text { if } & x>1 \\ 1 & \text { if } & x=1\end{array}\right.$, then find gof.
c) Check whether gof is an onto function.

MARCH 2011

19. (a) i) $f:\{1,2,3,4\} \rightarrow\{5\}$ defined by $f=\{(1,5),(2,5),(3,5),(4,5)\}$.
Does the function f invertible?
ii) $A=R-\left\{\frac{7}{5}\right\} B=R-\left\{\frac{3}{5}\right\} f: A \rightarrow B$
defined by $f(x)=\frac{3 x+4}{5 x-7} \cdot g: B \rightarrow A$
defined by $g(y)=\frac{7 y+4}{5 y-3}$.
Find gof.
(b) Let $A=N \times N$ (N-set of natural nos.) and * be a binary operation on A defined by $(a, b) *(c, d)=(a c-b d, a d+b c)$. Show that $*$ is commutative on A .

SAY 2010
20. Let $f(x)=\frac{x-1}{x-3}, x \neq 3$ and $g(x)=\frac{x-3}{x-1}, x \neq 1$ be two real valued functions defined on R.
a) Find $(f o g)(x), x \neq 0$
b) Find $f^{-1}(x)$ and $g^{-1}(x), x \neq 1$
c) Find $(g \circ f)^{-1}(x)$

