CHAPTER 7 ALTERNATING CURRENT

1. Write the equations for the instantaneous values of voltages and currents.
Ans:

A.C voltages and currents are represented by

$$
\begin{aligned}
\mathrm{v} & =\mathrm{v}_{\mathrm{m}} \sin \omega \mathrm{t} \text { and } \\
\mathrm{i} & =\mathrm{i}_{\mathrm{m}} \sin \omega \mathrm{t}
\end{aligned}
$$

$\mathrm{v} \rightarrow$ instantaneous value of voltage
$\mathrm{v}_{\mathrm{m}} \rightarrow$ Peak value of voltage
$\omega \rightarrow$ Angular frequency
$\omega \mathrm{t} \rightarrow$ Phase angle $\left[\omega=\frac{\theta}{\mathrm{t}} \Rightarrow \theta=\omega \mathrm{t}\right]$
$\mathrm{i} \rightarrow$ instantaneous value of current
$\mathrm{i}_{\mathrm{m}} \rightarrow$ Peak value of current
2. Define r.m.s. value of a.c. Give the relation between the rms value and the peak value.
Ans: r.m.s. value of a.c. is defined as the d.c. equivalent which produces the same amount of heat energy in same time as that of an a.c.
Relation between r.m.s. value and peak value is $\mathrm{I}_{\mathrm{rms}}=\frac{\mathbf{i}_{\mathrm{m}}}{\sqrt{2}}$

$$
\mathrm{v}_{\mathrm{rms}}=\frac{\mathrm{v}_{\mathrm{m}}}{\sqrt{2}}
$$

$3[Q]$. If the instantaneous current from an ac source is $10 \sin 314 t$ ampere, what will be the effective current in the circuit?

4[P]. (a) The peak voltage of an ac supply is 300 V . What is the rms voltage?
(b) The rms value of current in an ac circuit is 10 A . What is the peak current?
5. Derive an expression for the current when an A.C. voltage applied to a resistor. What is the average power consumed in a complete cycle?
Ans:

Consider an a.c. voltage
$\mathrm{v}=\mathrm{v}_{\mathrm{m}} \sin \omega t$ applied to a resistor R .

$$
\begin{equation*}
\mathrm{v}=\mathrm{v}_{\mathrm{m}} \sin \omega \mathrm{t} \tag{1}
\end{equation*}
$$

Dividing equation (1) by R

$$
\begin{align*}
& \frac{\mathrm{v}}{\mathrm{R}}=\frac{\mathrm{v}_{\mathrm{m}}}{\mathrm{R}} \sin \omega \mathrm{t} \\
\Rightarrow & \mathrm{i}=\mathbf{i}_{\mathrm{m}} \sin \omega \mathrm{t} \tag{2}
\end{align*}
$$

From equations (1) and (2), we can see that both the voltage and current are in phase.

Phasor diagram

Average power consumed in a complete cycle:
$\langle\mathrm{P}\rangle=\mathrm{V}_{\mathrm{rms}} \mathrm{I}_{\mathrm{r}} \mathrm{ms}$

6[P]. A 100-ohm resistor is connected to a $220 \mathrm{~V}, 50 \mathrm{~Hz}$ supply.
(a) What is the rms value of current in the circuit?
(b) What is the net power consumed over a full cycle?
7. Derive the expression for current in an A.C. circuit containing an inductor only. Ans:

Consider an AC voltage
$\mathrm{v}=\mathrm{v}_{\mathrm{m}} \sin \omega \mathrm{t}$ applied to an inductor
(L)
$\mathrm{V}=\mathrm{v}_{\mathrm{m}} \sin \omega \mathrm{t}$
By kirchhoff's voltage rule
$\mathrm{v}-\mathrm{L} \frac{\mathrm{di}}{\mathrm{dt}}=0$
$\mathrm{v}=\mathrm{L} \frac{\mathrm{di}}{\mathrm{dt}}$
$\mathrm{V}_{\mathrm{m}} \sin \omega \mathrm{t}=\mathrm{L} \frac{\mathrm{di}}{\mathrm{dt}}$
$\mathrm{di}=\frac{\mathrm{v}_{\mathrm{m}}}{\mathrm{L}} \sin \omega \mathrm{tdt}$
$\therefore \mathrm{i}=\int \mathrm{di} \quad \left\lvert\, \begin{aligned} & \sin (\pi / 2-\theta)=\cos \theta \\ & \sin \left(\theta-\frac{\pi}{2}\right)=-\cos \theta\end{aligned}\right.$
$=\int \frac{\mathrm{v}_{\mathrm{m}}}{\mathrm{L}} \sin \omega \mathrm{tdt}$
$=\frac{\mathrm{V}_{\mathrm{m}}}{\mathrm{L}} \cdot \frac{-\cos \omega \mathrm{t}}{\omega}$
$=\frac{\mathrm{V}_{\mathrm{m}}}{\mathrm{L} \omega}(-\cos \omega \mathrm{t})$
$=\mathrm{i}_{\mathrm{m}}(-\cos \omega \mathrm{t})$, but $\mathrm{L} \omega=\mathrm{X}_{\mathrm{L}}$ is the
inductive reactance
$=i_{m} \sin \left(\omega t-\frac{\pi}{2}\right) \quad \frac{\mathrm{V}_{\mathrm{m}}}{\mathrm{L} \omega}=\mathrm{i}_{\mathrm{m}}$
$i=i_{m} \sin \left(\omega t-\frac{\pi}{2}\right)$
From equations (1) and (2) we can see that the current lags behind the voltage by a phase angle $\frac{\pi}{2}$.

Phasor Diagram

8. Define inductive reactance

Ans: Inductive reactance (X_{L}) is the resistance offered by the inductor towards the flow of a.c. $\mathbf{X}_{\mathbf{L}}=\mathbf{L} \boldsymbol{\omega}$
SI unit of X_{L} is $\mathbf{o h m}$.
9. What is the average power consumed by inductor in a complete cycle.
Ans: Average power, $\langle\mathrm{P}\rangle=0$
10[P]. A 44 mH inductor is connected to $220 \mathrm{~V}, 50 \mathrm{~Hz}$ ac supply,

Determine the rms value of the current in the circuit.
11. Derive an expression for the current in an A.C circuit containing a capacitor.
Ans:

Consider an a.c. voltage
$\mathrm{v}=\mathrm{v}_{\mathrm{m}} \sin \omega \mathrm{t}$ applied to a circuit containing a capacitor only.
$\mathrm{v}=\mathrm{v}_{\mathrm{m}} \sin \omega \mathrm{t}$ \qquad (1)

In a capacitor $\mathrm{v}=\frac{\mathbf{q}}{\mathbf{C}}$
$\Rightarrow \quad \frac{\mathrm{q}}{\mathrm{C}}=\mathrm{v}_{\mathrm{m}} \sin \omega \mathrm{t}$
$\mathrm{i}=\frac{\mathrm{dq}}{\mathrm{dt}}=\frac{\mathrm{d}}{\mathrm{dt}}\left(\mathrm{Cv}_{\mathrm{m}} \sin \omega \mathrm{t}\right)$
$=\mathrm{Cv}_{\mathrm{m}} \frac{\mathrm{d}}{\mathrm{dt}}(\sin \omega \mathrm{t})$
$=C v_{m} \cos \omega t \times \omega$
$=(\mathrm{C} \omega) \mathrm{v}_{\mathrm{m}} \cos \omega \mathrm{t}$
$=\frac{\mathrm{v}_{\mathrm{m}} \cos \omega \mathrm{t}}{\left(\frac{1}{\mathrm{C} \omega}\right)}$, but $\frac{1}{\mathrm{C} \omega}=\mathrm{X}_{\mathrm{c}}$ is the
capacitive reactance.
$\mathrm{i}=\frac{\mathrm{V}_{\mathrm{m}}}{\mathrm{X}_{\mathrm{L}}} \cos \omega \mathrm{t}$
$\Rightarrow \mathrm{i}=\mathrm{i}_{\mathrm{m}} \cos \omega \mathrm{t}$
$\Rightarrow i=i_{m} \sin \left(\omega t+\frac{\pi}{2}\right)$
From equations (1) and (2), We can see that the current leads the voltage by a phase angle $\frac{\pi}{2}$.

Phasor Diagram

12. Define Capacitative reactance (\mathbf{X}_{c})
Ans: Capacitative reactance is the is the resistance offered by the capacitor towards the flow of a.c.
$\mathrm{Xc}=\frac{1}{\mathrm{c} \omega}$
SI unit of X_{c} is ohm.
13. Capacitor blocks dc. Why?

Ans: In the case of d.c., $\boldsymbol{\omega}=\mathbf{0}$
So $\quad X_{c}=\frac{1}{c \omega}=\frac{1}{c \times 0}=\frac{1}{0}=\infty$. Since reactance is infinity, capacitor blocks d.c.
14. What is the average power consumed by a capacitor in a complete cycle of a.c
Ans: $\langle\mathrm{P}\rangle=0$
$\mathbf{1 5}[\mathrm{P}]$. A $60 \mu \mathrm{~F}$ capacitor is connected to a $110 \mathrm{~V}, 60 \mathrm{~Hz}$ ac supply. Determine the rms value of current in the circuit
16. What is meant by watt less current (idle current)?
Ans: In an a.c. circuit containing an inductor or capacitor only, the phase difference between voltage and current is $\frac{\pi}{2}$.
Therefore, the average power

$$
\begin{aligned}
\langle\mathrm{P}\rangle & =\mathrm{V}_{\mathrm{rms}} \mathrm{I}_{\mathrm{rms}} \cos \phi \\
& =\mathrm{V}_{\mathrm{rms}} \mathrm{I}_{\mathrm{rms}} \cos \frac{\pi}{2} \\
& =\mathrm{V}_{\mathrm{rms}} \mathrm{I}_{\mathrm{rms}} \times 0=0
\end{aligned}
$$

Since the average power is zero, the current in such circuits is called wattles current.

17[Q]. Show graphically the variation of Ohmic resistance, inductive reactance and capacitive reactance with frequency of AC .

LCR CIRCUIT

18. For a series LCR circuit
(i) Draw the phasor diagram
(ii) Give the expression for current
(iii) Derive an expression for impedance
(iv) Draw the impedance triangle
(v) Give the expression for the phase angle
Ans:

(i) Phasor Diagram

Consider an a.c. voltage $\mathrm{v}=\mathrm{v}_{\mathrm{m}} \sin \omega \mathrm{t}$ applied to a series circuit containing an inductor (L), capacitor (C) and a resistor (R).

(ii) Expression for current

From the phasor diagram, we can see that current \mathbf{i} leads the resultant voltage by a phase angle ϕ.
Therefore $\mathbf{i}=\mathbf{i}_{\mathbf{m}} \sin (\boldsymbol{\omega} \mathbf{t}+\boldsymbol{\phi})$
If we assume $\mathbf{V}_{\mathbf{L}}>\mathbf{V}_{\mathbf{C}}$, we will obtain $\quad \mathbf{i}=\mathbf{i}_{\mathbf{m}} \sin (\boldsymbol{\omega t}+\phi)$
Combining the above expressions,

$$
\mathbf{i}=\mathbf{i}_{\mathbf{m}} \sin (\omega \mathbf{t} \pm \phi)
$$

(iii) Impedance

Impedance (\mathbf{Z}) means the total resistance offered by L, C and R towards AC.
From the phasor diagram we have,
$\mathrm{V}=\sqrt{\mathrm{V}_{\mathrm{R}}{ }^{2}+\left(\mathrm{V}_{\mathrm{C}}-\mathrm{V}_{\mathrm{L}}\right)^{2}}$
At the maximum value of \mathbf{v} and \mathbf{i}
$\mathrm{V}_{\mathrm{R}}=\mathrm{i}_{\mathrm{m}} \mathrm{R}, \mathrm{V}_{\mathrm{C}}=\mathrm{i}_{\mathrm{m}} \mathrm{X}_{\mathrm{C}}, \mathrm{V}_{\mathrm{L}}=\mathrm{i}_{\mathrm{m}} \mathrm{X}_{\mathrm{L}}$
Therefore,
$\mathrm{V}_{\mathrm{m}}=\sqrt{\left(\mathrm{i}_{\mathrm{m}} \mathrm{R}\right)^{2}+\left(\mathrm{i}_{\mathrm{m}} \mathrm{X}_{\mathrm{C}}-\mathrm{i}_{\mathrm{m}} \mathrm{X}_{\mathrm{L}}\right)^{2}}$
$\Rightarrow \mathrm{V}_{\mathrm{m}}=\sqrt{\mathrm{i}_{\mathrm{m}}{ }^{2} \mathrm{R}^{2}+\mathrm{i}_{\mathrm{m}}{ }^{2}\left(\mathrm{X}_{\mathrm{C}}-\mathrm{X}_{\mathrm{L}}\right)^{2}}$
$\Rightarrow \mathrm{V}_{\mathrm{m}}=\mathrm{i}_{\mathrm{m}} \sqrt{\mathrm{R}^{2}+\left(\mathrm{X}_{\mathrm{C}}-\mathrm{X}_{\mathrm{L}}\right)^{2}}$
$\Rightarrow \frac{\mathrm{V}_{\mathrm{m}}}{\mathrm{i}_{\mathrm{m}}}=\sqrt{\mathrm{R}^{2}+\left(\mathrm{X}_{\mathrm{C}}-\mathrm{X}_{\mathrm{L}}\right)^{2}}$; but $\frac{\mathrm{V}_{\mathrm{m}}}{\mathrm{i}_{\mathrm{m}}}=\mathrm{Z}$
$\Rightarrow \mathrm{Z}=\sqrt{\mathrm{R}^{2}+\left(\mathrm{X}_{\mathrm{C}}-\mathrm{X}_{\mathrm{L}}\right)^{2}}$
called the impedance of LCR circuit.
Where, $X_{C}=\frac{1}{\mathrm{c} \omega}$, is the capacitative reactance,
$\mathrm{X}_{\mathrm{L}}=\mathrm{L} \omega$, is the inductive reactance and R is the ohmic resistance

(iv) Impedance triangle

It is a right angled triangle, whose base represents the ohmic resistance, altitude represents the net reactance $\left(\mathrm{X}_{\mathrm{C}}-\mathrm{X}_{\mathrm{L}}\right)$ and the hypotenuse represents the impedance (\mathbf{Z}) of LCR circuit.

(v) Phase Angle (ϕ)

From the impedance triangle,
$\tan \phi=\frac{\mathrm{X}_{\mathrm{C}}-\mathrm{X}_{\mathrm{L}}}{\mathrm{R}}$
$\Rightarrow \phi=\boldsymbol{\operatorname { t a n }}^{-1}\left(\frac{\mathbf{X}_{\mathrm{C}}-\mathbf{X}_{\mathrm{L}}}{\mathrm{R}}\right)$
If $X_{C}>X_{L}, \phi$ is positive, ie, the current leads the voltage.
If $X_{C}<X_{L}$ then ϕ is negative ie, the current lags behind the voltage.
19. Explain the resonance in a series LCR circuit.
Ans: For a particular frequency of a.c. voltage $\left(\omega_{0}\right) \mathrm{X}_{\mathrm{L}}$ becomes equal to X_{C}, then impedance

$$
\mathrm{Z}=\sqrt{\mathrm{R}^{2}+\left(\mathrm{X}_{\mathrm{C}}-\mathrm{X}_{\mathrm{L}}\right)^{2}}
$$

becomes minimum ($\mathrm{Z}=\mathrm{R}$). Hence maximum current flows through the circuit. This phenomenon in which the current through an LCR circuit, becomes maximum at a particular
frequency is called resonance. The frequency at which resonance occurs is called resonance frequency.
20. Derive an expression for the resonance frequency.
Ans: Resonance condition is

$$
\mathrm{X}_{\mathrm{L}}=\mathrm{X}_{\mathrm{C}}
$$

$\Rightarrow L \omega_{0}=\frac{1}{C \omega_{0}}$
$\Rightarrow \omega_{0}{ }^{2}=\frac{1}{\mathrm{LC}}$
$\Rightarrow \omega_{0}=\frac{1}{\sqrt{\text { LC }}} \quad$,where ω_{0} is the resonance angular frequency
But $\omega_{0}=2 \pi f_{0}$
Therefore, $2 \pi \mathrm{f}_{0}=\frac{1}{\sqrt{\mathrm{LC}}}$
$\Rightarrow \mathbf{f}_{0}=\frac{1}{2 \pi \sqrt{\mathrm{LC}}}$, this is the expression for resonance frequency (f_{0})
21. What is the value of impedance at resonance?
Ans: We have $\mathrm{Z}=\sqrt{\mathrm{R}^{2}+\left(\mathrm{X}_{\mathrm{C}}-\mathrm{X}_{\mathrm{L}}\right)^{2}}$ At resonance $X_{C}=X_{L}$
ThereforeZ $=\sqrt{\mathrm{R}^{2}+0}=\mathrm{R}$
Thus at resonance the entire applied voltage appears across \boldsymbol{R}.
22. Define (i) Band width
(ii) Sharpness (iii) Quality factor

Ans: (i)Band width (B)
Band width is defined as "the difference between the frequencies on either side of resonance frequency for which the value of current is $\frac{1}{\sqrt{2}}$ times the peak value at resonance".

Band width, $\boldsymbol{\beta}=\boldsymbol{\omega}_{\mathbf{U}} \boldsymbol{-} \boldsymbol{\omega}_{\mathbf{L}}$ ω_{L} is the Lower cut off frequency and ω_{U} is the Upper cut off frequency Note :- The resonance curve is sharp if the band width is small.

(ii) Sharpness of resonance

The peak value of current at resonance depends only on the ohmic resistance (R) of the circuit. If the value of R is small the peak value of current is high at resonance frequency.

Sharpness of LCR circuit is defined as "the ratio of resonant frequency to the band width"

$$
\mathbf{S}=\frac{\omega_{0}}{\omega_{\mathrm{U}}-\omega_{\mathrm{L}}}
$$

(iii) Quality factor (Q)

Q - factor is defined as the ratio of inductive reactance or capacitative reactance to the resistance at resonance.
$\mathrm{Q}=\frac{\mathrm{L} \omega}{\mathrm{R}}$ or $\mathrm{Q}=\frac{(1 / \mathrm{C} \omega)}{\mathrm{R}}=\frac{1}{\mathrm{C} \omega \mathrm{R}}$

Note:-

Quality factor and sharpness are numerically equal.
23. Derive an expression for the average power consumed by a series LCR circuit in a complete cycle of ac.
Ans: In an LCR circuit the instantaneous value of voltage is
$\mathrm{v}=\mathrm{v}_{\mathrm{m}} \sin \omega \mathrm{t}$ and that of current is
$\mathrm{I}=\mathrm{i}_{\mathrm{m}} \sin (\omega \mathrm{t}+\phi)$
The average power consumed in a complete cycle
$\langle\mathrm{P}\rangle=\frac{\int_{0}^{\mathrm{T}} \mathrm{Pdt}}{\mathrm{T}}$
$=\frac{1}{\mathrm{~T}} \int_{0}^{\mathrm{T}}$ vidt
$=\frac{1}{\mathrm{~T}} \int_{0}^{\mathrm{T}} \mathrm{v}_{\mathrm{m}} \sin \omega \mathrm{t} \cdot \mathrm{i}_{\mathrm{m}} \sin (\omega \mathrm{t}+\phi) \mathrm{dt}$
=
$\frac{\mathrm{v}_{\mathrm{m}} \mathrm{i}_{\mathrm{m}}}{\mathrm{T}} \int_{0}^{\mathrm{T}} \frac{1}{2}[\cos (\omega \mathrm{t}-(\omega \mathrm{t}+\phi))-\cos (\omega \mathrm{t}+\omega \mathrm{t}+\phi)] \mathrm{dt}$
$=\frac{\mathrm{v}_{\mathrm{m}} \mathrm{i}_{\mathrm{m}}}{2 \mathrm{~T}} \int_{0}^{\mathrm{T}}[\cos (-\phi)-\cos (2 \omega \mathrm{t}+\phi)] \mathrm{dt}$
$\left.=\frac{\mathrm{v}_{\mathrm{m}} \mathrm{i}_{\mathrm{m}}}{2 \mathrm{~T}}\left[\int_{0}^{\mathrm{T}} \cos \phi \mathrm{dt}-\int_{0}^{\mathrm{T}} \cos (2 \omega \mathrm{t}+\phi)\right] \mathrm{dt}\right]$
$=\frac{\mathrm{v}_{\mathrm{m}} \mathrm{i}_{\mathrm{m}}}{2 \mathrm{~T}}\left[\int_{0}^{\mathrm{T}} \cos \phi \mathrm{dt}-0\right]$
$=\frac{\mathrm{v}_{\mathrm{m}} \mathrm{i}_{\mathrm{m}}}{2 \mathrm{~T}} \cos \phi \int_{0}^{\mathrm{T}} \mathrm{dt}$
$=\frac{\mathrm{v}_{\mathrm{m}} \mathrm{i}_{\mathrm{m}}}{2 \mathrm{~T}} \cos \phi[\mathrm{t}]_{0}{ }^{\mathrm{T}}$
$=\frac{\mathrm{v}_{\mathrm{m}} \mathrm{i}_{\mathrm{m}}}{2 \mathrm{~T}} \cos \phi[\mathrm{~T}-0]$
$=\frac{\mathrm{v}_{\mathrm{m}} \mathrm{i}_{\mathrm{m}}}{2} \cos \phi$
$=\frac{\mathrm{v}_{\mathrm{m}}}{\sqrt{2}} \frac{\mathrm{i}_{\mathrm{m}}}{\sqrt{2}} \cos \phi$
$=\mathrm{V}_{\mathrm{rms}} \mathrm{I}_{\mathrm{rms}} \cos \phi$
$\langle\mathrm{P}\rangle_{=} \mathbf{V}_{\text {rms }} \mathrm{I}_{\text {rms }} \cos \phi$
The term $\mathbf{V}_{\text {rms }} \mathbf{I}_{\mathbf{r m s}}$ is called apparent power and the term $\cos \phi$ is called power factor.
From the impedance triangle we have
$\cos \phi=\frac{R}{Z}$
In the case of resistor, $\phi=0$
$\langle\mathrm{P}\rangle=\mathrm{V}_{\text {rms }} \mathrm{I}_{\mathrm{rms}} \cos 0$
$=\mathrm{V}_{\mathrm{rms}} \mathrm{I}_{\mathrm{rms}} \times 1$
$=\mathrm{V}_{\mathrm{rms}} \mathrm{I}_{\mathrm{rms}}$
In the case of Inductor
$\phi=\frac{\pi}{2}$
$\langle\mathrm{P}\rangle=\mathrm{V}_{\text {rms }} \mathrm{I}_{\mathrm{rms}} \cos \phi$
$=\mathrm{V}_{\text {rms }} \mathrm{I}_{\mathrm{rms}} \cos \frac{\pi}{2}$
$=\mathrm{V}_{\mathrm{rms}} \mathrm{I}_{\mathrm{rms}} \times 0=0$

In the case of capacitor

$$
\begin{aligned}
\phi & =\frac{\pi}{2} \\
\langle\mathrm{P}\rangle & =\mathrm{V}_{\mathrm{rms}} \mathrm{I}_{\mathrm{rms}} \cos \frac{\pi}{2} \\
& =\mathrm{V}_{\text {rms }} \mathrm{I}_{\mathrm{rms}} \times 0=0
\end{aligned}
$$

24. Draw the variation of impedance of an LCR circuit with frequency of AC.
25. An electric bulb B and a parallel plate capacitor C are connected in series as shown in figure. The bulb glows with some brightness. How will the glow of the bulb affected on introducing a dielectric slab between the plates of the capacitor? Give reasons in support of your answer.

26. Given below are two electric circuits A and B . What is the ratio of power factor of the circuit B to that of A ?

27. Find the voltmeter and ammeter readings in the given circuit.

28. Obtain the resonant frequency of a series LCR circuit with $\mathrm{L}=2.0 \mathrm{H}$, $\mathrm{C}=32 \mu \mathrm{~F}$ and $\mathrm{R}=10 \Omega$. What is the Q value of this circuit?
29. A series LCR circuit with $\mathrm{R}=20 \Omega$, $\mathrm{L}=1.5 \mathrm{H}$ and $\mathrm{C}=35 \mu \mathrm{~F}$ is connected to a variable-frequency 200 V supply.

When the frequency of the supply equals the natural frequency of the circuit, what is the average power transferred to the circuit in one complete cycle?
30. A coil of self-inductance 0.50 H and resistance 100Ω is connected to a $240 \mathrm{~V}, 50 \mathrm{~Hz}$ ac supply.
(a) What is the maximum current in the circuit?
(b) What is the time lag between voltage maximum and current maximum?
31. A $100 \mu \mathrm{~F}$ capacitor in series with a 40Ω resistance is connected to a $110 \mathrm{~V}, 60 \mathrm{~Hz}$ supply.
(a) What is the maximum current in the circuit?
(b) What is the time lag between voltage maximum and current maximum?
32. Explain how oscillations are produced in an LC circuit.
Ans: An oscillator is an arrangement that can produce continuous alternating voltage using a d.c. source. Consider a fully charged capacitor connected across an inductor through a switch.
By Kirchhoff's loop rule
$\frac{\mathrm{q}}{\mathrm{c}}-\mathrm{L} \frac{\mathrm{di}}{\mathrm{dt}}=0$
But $\mathrm{i}=\frac{-\mathrm{dq}}{\mathrm{dt}}(-\mathrm{ve}$ sign show that when \mathbf{i} increases, q decreases).
$\therefore \frac{\mathrm{q}}{\mathrm{c}}+\mathrm{L} \frac{\mathrm{d}^{2} \mathrm{q}}{\mathrm{dt}^{2}}=0$
$\Rightarrow \mathrm{L} \frac{\mathrm{d}^{2} \mathrm{q}}{\mathrm{dt}^{2}}+\frac{\mathrm{q}}{\mathrm{C}}=0$
Dividing by L,
$\frac{d^{2} q}{d t^{2}}+\frac{1}{L C} q=0$
This equation has the form of
$\frac{d^{2} x}{d t^{2}}+\omega_{0}{ }^{2} x=0$ for a simple harmonic oscillator. The charge, therefore oscillates with a natural frequency $\omega_{0}=\frac{1}{\sqrt{\mathrm{LC}}}$ and varies sinusoidally with time as
$\mathbf{q}=\mathbf{q}_{\mathrm{m}} \cos \left(\omega_{0} \mathbf{t}+\phi\right)$
When the key is closed, the charge flows from the capacitor and the current in the circuit increases. Thus the charge on the capacitor decreases and it energy, $\mathbf{U}_{\mathbf{E}}=\frac{\mathbf{q}^{2}}{2 \mathbf{C}}$ decreases. At the same time, the current through the inductor increases and a magnetic field is set up in it. Hence energy in the inductor, $\mathbf{U}_{\mathbf{B}}=1 / \mathbf{2} \mathbf{L i}^{\mathbf{2}}$ increases. The current in the circuit increases gradually and becomes maximum when the capacitor is fully discharged.

Now the current flows in the opposite direction and the capacitor is charged with opposite polarities. This process continues till the capacitor is fully charged. Then the whole process repeats. Thus, the energy in the system oscillates between the capacitor and inductor.

LC oscillations are damped due to resistance of the components. The effect of this resistance brings damping effect on charge and current in the circuit and the oscillations finally die away.

The total energy of the system will not remain constant. Some energy is radiated away in the form of electromagnetic waves.
33. A $30 \mu \mathrm{~F}$ capacitor is connected to a 27 mH inductor. What is the angular frequency of free oscillations of the circuit?
34. What is the use of transformers? Ans: Transformer is a device used to increase or decrease A.C. voltage.
35. What is the principle of a transformer?
Ans: Transformer works on the principle of mutual induction.

When a.c. flows through the primary coil, a changing magnetic field is produced around it. The secondary coil is placed in this changing magnetic field and hence an e.m.f. is induced across the secondary coil.
36. Derive the transformer equation.
Ans:
step up transformer

$\mathbf{N}_{\mathrm{s}}>\mathbf{N}_{\mathrm{p}}, \mathbf{V}_{\mathrm{s}}>\mathbf{V}_{\mathrm{p}}$ and $\mathbf{i}_{\mathrm{s}}<\mathbf{i}_{\mathbf{p}}$
Step down transformer

$N_{s}<N_{p}, V_{s}<V_{p}$ and $i_{s}>i_{p}$

Let N_{p} and N_{s} be the number of turns in the primary and secondary of the transformer. The voltage induced in the secondary, when AC flows through the primary is given by

$$
\begin{equation*}
V_{s}=N_{s} \frac{d \phi}{d t} \tag{1}
\end{equation*}
$$

At the same time, due to selfinduction, the back e.m.f. produced in the primary is

$$
\begin{equation*}
V_{p}=N_{p} \frac{d \phi}{d t} \tag{2}
\end{equation*}
$$

Dividing equation (1) by (2)

$$
\frac{\mathrm{Vs}}{\mathrm{Vp}}=\frac{\mathrm{Ns}}{\mathrm{~Np}}
$$

37. Define the efficiency of a transformer.

Ans: Efficiency, $\eta=\frac{\text { output power }}{\text { input power }}$
38. What is an ideal transformer?

Derive an expression connecting the currents and voltages in the primary and secondary coils of an ideal transformer.
Ans: Ideal transformer is a transformer having efficiency $\eta=1$.
$\Rightarrow \quad$ Input power $=$ output power $\mathrm{Ie}, \mathrm{V}_{\mathrm{p}} \mathrm{i}_{\mathrm{p}}=\mathrm{V}_{\mathrm{s}} \mathrm{i}_{\mathrm{s}}$
$\Rightarrow \frac{i_{\mathrm{p}}}{\mathbf{i}_{\mathrm{s}}}=\frac{\mathrm{V}_{\mathrm{s}}}{\mathrm{V}_{\mathrm{p}}}$
Therefore we have
$\frac{\mathrm{V}_{\mathrm{s}}}{\mathrm{V}_{\mathrm{p}}}=\frac{\mathrm{N}_{\mathrm{s}}}{\mathrm{N}_{\mathrm{p}}}=\frac{\mathrm{i}_{\mathrm{p}}}{\mathrm{i}_{\mathrm{s}}}$
39. What are the different power losses in a transformer?

Ans: The different power losses in a transformer are:

1. Copper Loss

As the current flows through the primary and secondary copper wires, electric energy is wasted in the form of heat.
2. Eddy current Loss (Iron Loss)
The eddy currents produced in the soft iron core of the transformer produce heating. Thus electric energy is wasted in the form of heat.

3. Magnetic flux leakage

The entire magnetic flux produced by the primary coil may not be available to the secondary coil. Thus some energy is wasted.

4. Hysteresis Loss

Since the soft iron core is subjected to continuous cycles of magnetization, the core gets heated due to hysteresis. Thus some energy is wasted.

