## CHAPTER 1

## ELECTRIC CHARGES AND FIELDS

1. What is meant by electrostatics?

Ans: Electrostatics is the branch of physics which deals with charges at rest.
2. Which are the three methods of charging a body?
Ans: The three methods are:
a) Rubbing (charging by friction)
b) Conduction
c) Induction
3. What is the method to charge an insulator?
Ans: Rubbing
4. What are the methods to charge a conductor?

Ans: Conduction and induction

## 5. What is frictional electricity? Give an example.

Ans: The charge obtained by a body on rubbing with another body is called frictional electricity.
Example: When a glass rod is rubbed with silk, the glass rod gets positively charged and silk gets negatively charged.
6. Give some examples for substances which get charge on rubbing.
Ans: The substances in column I when rubbed with substances in column II, acquire positive charge while substances in column II acquire negative charge.

| Column I | Column II |
| :--- | :---: |
| Glass | Silk |
| Wool | Amber, ebonite, plastic |
| Ebonite | Polythene |
| Dry hair | Comb |

## 7. How does a body get charged?

Ans: A body gets charged by the transfer of electrons. The body which loses electrons gets positively charged and the body which gains electrons gets negatively charged.

## 8. Is the mass of a body affected by charging?

Ans: Yes. A positively charged body loses electrons. Therefore, its mass decreases. A negatively charged body gains electrons. So its mass increases. (Electron has a definite mass of $9.1 \times$ $10^{-31} \mathrm{Kg}$ )
9. Distinguish between conductors and insulators. Give examples for both.
Ans: The materials which allow electricity to pass through them easily are called conductors.
Examples: Metals
The materials which offer a high resistance to the passage of electricity are called insulators.
Examples: Most of the non-metals like glass, porcelain, plastic, nylon, wood are insulators.
10. Conductors cannot be charged by rubbing but insulators can. Why?

Ans: This is because, when some charge is transferred to a conductor, it readily gets distributed over the entire surface of the conductor. But if some charge is put on an insulator, it stays at the same place.
11. What is meant by charging by conduction?
Ans: When a charged body is brought in to contact with an uncharged conductor, charge flows from the charged body to the uncharged body.

## 12. What is meant by charging by induction?

Ans: When a charged body is brought near to an uncharged conductor (without touching), that end of the uncharged conductor which is near to the charged body gets oppositely charged and the farther end is charged with the same type of charge.

(a)

(b)

(c)

(d)

(e)
13. What is the use of an electroscope?
Ans: It is a device used to detect the charge on a body.

## 14. Briefly explain the working of a gold leaf electroscope.

Ans: A gold leaf electroscope consists of a vertical metal rod fixed in a box, with two thin gold leaves attached to its end.


When a charged object touches the metal knob at the top of the rod, charge flows on to the leaves. Since both the leaves are charged by the same type of charge, they diverge due to electrostatic repulsion.

The separation between the leaves gives a rough measure of the amount of charge.

15. State whether the following statement is true or false.
'During charging by induction, new charges are created in the body'
Ans: False. During induction only a rearrangement of charges takes place. No new charges are created in the body.

## 16. Repulsion is the sure test of electrification. Explain

Ans: A charged body can attract another oppositely charged body as well as an uncharged body. But a charged body can repel only similar charged bodies.
17. Can a body attract a similar charged body in any case?
Ans: Yes. If the charge on one body is much greater than the charge on the other body, it can induce opposite charges on the other body. Then the attraction can dominate the repulsion.
18. Explain the properties electric charges.
Ans: The basic properties electric charges are:

## a) Additive property

If a system contains ' $n$ ' charges $\mathrm{q}_{1}, \mathrm{q}_{2}, \mathrm{q}_{3},-----, \mathrm{q}_{\mathrm{n}}$, then the total charge of the system is $q_{1}+q_{2}+$ $\mathrm{q}_{3}+------+\mathrm{q}_{\mathrm{n}}$.
b) Conservation Electric Charge

Charge can neither
be created nor be destroyed but can be transferred from one body to another.

## OR

The total charge of an isolated system is always conserved.
c) Quantization of electric charge

According to quantization of electric charge "in the universe, charge of any body is an integer multiple of $e$ "
$\mathbf{Q}=\mathbf{n e}$, where n is an integer and $\mathbf{e}=\mathbf{1 . 6} \times \mathbf{1 0}^{-19} \mathbf{C}$
That is, charges like $1 \mathbf{e}, 2 \mathbf{e}, 3 \mathbf{e},-----$ are possible but a charge like 1.5 e is not possible.

19[P]. A polythene piece rubbed with wool is found to have a negative charge of $3 \times 10^{-7} \mathrm{C}$.
(a) Estimate the number of electrons transferred (from which to which?)
(b) Is there a transfer of mass from wool to polythene?

## COULOMB'S LAW

20. State Coulomb's inverse square law in electrostatics.
Ans: Coulomb's law states that "the electrostatic force between two stationary point
charges is directly proportional to the product of the magnitudes of the charges and inversely proportional to the square of the distance between them."

$F=\frac{1}{4 \Pi \varepsilon} \frac{q_{1} q_{2}}{r^{2}}$
$\epsilon$ is called the permittivity of the medium.
If the charges are placed in vacuum or air, $\epsilon=\epsilon_{0}$, where $\epsilon_{0}$ is the permittivity of vacuum or air.

Then,

$$
\mathrm{F}=\frac{1}{4 \Pi \varepsilon_{0}} \frac{\mathbf{q}_{1} \mathbf{q}_{2}}{\mathbf{r}^{2}}
$$

$\epsilon_{0}=8.854 \times 10^{-12} \mathrm{C}^{2} / \mathrm{Nm}^{2}$
$\frac{1}{4 \Pi \varepsilon_{0}}=9 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}$
For any other medium $\epsilon=\epsilon_{0} \epsilon_{\mathrm{r}}$, where $\varepsilon_{\mathrm{r}}=\frac{\boldsymbol{\varepsilon}}{\boldsymbol{\varepsilon}_{0}}$ is called the relative permittivity (or dielectric constant)of the medium with respect to vacuum or air.
$F_{\text {med }}=\frac{1}{4 \Pi \varepsilon_{0} \varepsilon_{r}} \frac{q_{1} q_{2}}{r^{2}}$

$$
\mathbf{F}_{\text {med }}=\frac{\mathrm{F}_{\text {air }}}{\varepsilon_{\mathrm{r}}}
$$

21. Define dielectric constant of a medium.

Ans: Dielectric constant of a medium is the ratio of
permittivity of the medium to the permittivity of vacuum.
22. If the air medium between two charges is replaced by water, what change you expect in the electrostatic force and why?

Ans:

$$
\mathbf{F}_{\text {med }}=\frac{\mathrm{F}_{\text {air }}}{\varepsilon_{\mathrm{r}}}
$$

The force decreases by $\varepsilon_{\mathrm{r}}$ times.
23. Write Coulomb's law in vector form.
Ans: Case(i) When the force is attractive


Force on $\mathrm{q}_{1}$ due to $\mathrm{q}_{2}$

$$
\vec{F}_{12}=\frac{1}{4 \Pi \varepsilon_{0}} \frac{q_{1} q_{2}}{r^{2}} \hat{r}_{12}
$$

Force on $\mathrm{q}_{2}$ due to $\mathrm{q}_{1}$

$$
\vec{F}_{21}=\frac{1}{4 \Pi \varepsilon_{0}} \frac{q_{1} q_{2}}{r^{2}} \hat{r}_{21}
$$

Case(ii) When the force is repulsive


Force on $q_{1}$ due to $q_{2}$
$\vec{F}_{12}=\frac{1}{4 \Pi \varepsilon_{0}} \frac{q_{1} q_{2}}{r^{2}} \hat{r}_{21}$

Force on $\mathrm{q}_{2}$ due to $\mathrm{q}_{1}$
$\vec{F}_{21}=\frac{1}{4 \Pi \varepsilon_{0}} \frac{q_{1} q_{2}}{r^{2}} \hat{r}_{21}$
24. Define one coulomb.

Ans: According to Coulomb's law,
$F=\frac{1}{4 \Pi \varepsilon_{0}} \frac{\mathbf{q}_{1} \mathbf{q}_{2}}{\mathbf{r}^{2}}$
Put $\mathrm{q}_{1}=\mathrm{q}_{2}=1 \mathrm{C}$ and $\mathrm{r}=1 \mathrm{~m}$, then
$\mathbf{F}=\mathbf{9} \times 10^{9} \frac{\mathbf{1} \times \mathbf{1}}{1^{2}}=\mathbf{9} \times 10^{9} \mathrm{~N}$
"One coulomb is defined as that charge which when placed in free space at a distance of Im with an equal and similar charge, will repel with a force of $9 \times 10^{9} N . "$
$25[P]$. Four point charges $q_{A}=2 \mu C$, $q_{B}=-5 \mu \mathrm{C}, q_{\mathrm{C}}=2 \mu \mathrm{C}$ and $\mathrm{q}_{\mathrm{D}}=-5 \mu \mathrm{C}$ are located at the corners of a square ABCD of side 10 cm . What is the force on a charge of $1 \mu \mathrm{C}$ placed at the centre of the square?

26[P]. (a) Two insulated charged copper spheres A and B have their centres separated by a distance of 50 cm . What is the mutual force of electrostatic repulsion if the charge on each is $\quad 6.5 \times 10^{-7} \mathrm{C}$ ? The radii of A and $B$ are negligible compared to the distance of separation.
(b) What is the force of repulsion if, each sphere is charged
double the above amount, and the distance between them is halved?
$27[P]$. Suppose the spheres A and B in the above problem have identical sizes. A third sphere of the same size but uncharged is bought in contact with the first, then brought in contact with the second, and finally removed from both. What is the new force of repulsion between A and B ? $28[\mathrm{P}]$. Two point charges $+16 \mu \mathrm{C}$ and $-9 \mu \mathrm{C}$ are placed 8 cm apart in air. You are asked to place $\mathrm{a}+10 \mu \mathrm{C}$ charge at a third position such that the net force on $+10 \mu \mathrm{C}$ charge is zero. Where will you place the charge? Make necessary calculations.
29. State superposition principle.

Ans: If there are a number of charges $q_{1}, q_{2}, \cdots-q_{n}$ around a charge ' $q$ ', then according to super position principle "the total force acting on ' $q$ ' is the vector sum of the forces on ' $q$ ' due to individual charges".
Total force, $\overrightarrow{\mathrm{F}}=\overrightarrow{\mathrm{F}}_{1}+\overrightarrow{\mathrm{F}}_{2}+---+\overrightarrow{\mathrm{F}}_{\mathrm{n}}$

$$
\text { Where } \begin{aligned}
\vec{F}_{1} & =\frac{1}{4 \Pi \varepsilon_{0}} \frac{q q_{1}}{r_{1}^{2}} \hat{r}_{1}, \\
\vec{F}_{2} & =\frac{1}{4 \Pi \varepsilon_{0}} \frac{q q_{2}}{r_{2}^{2}} \hat{r}_{2}
\end{aligned}
$$

$$
\vec{F}_{n}=\frac{1}{4 \Pi \varepsilon_{0}} \frac{q q_{n}}{r_{n}^{2}} \hat{r}_{n}
$$

30. What is the use of superposition principle?
Ans: It is used to find the force on a charge due to more than two charges.

## ELECTRIC FIELD

## 31. Define electric field.

Ans: It is the space around an electric charge, where an electrostatic force is experienced by another charge.
32. Define electric field intensity at a point?
Ans: Electric field intensity at a point is defined as the force experienced by unit positive charge placed at that point.


Let a small test charge ' $\boldsymbol{\delta q}$ ' is placed at P . Then the force experienced by this test charge is given by $\mathbf{F}=\frac{\mathbf{1}}{\mathbf{4 \Pi \varepsilon _ { 0 }}} \frac{\mathbf{q} \delta \mathbf{q}}{\mathbf{r}^{2}}$
Therefore, the force experienced by unit positive charge is $E=\lim _{\delta q \rightarrow 0} \frac{F}{\delta q}$
$E=\frac{1}{4 \Pi \varepsilon_{0}} \frac{\mathbf{q}}{r^{2}}$
33. Write the equations for electric field intensity.

Ans:

$$
\begin{aligned}
& E=\lim _{\mathrm{s} \rightarrow 0} \frac{\mathrm{~F}}{\mathrm{q}} \\
& \mathrm{E}=\frac{1}{4 \Pi \varepsilon_{0}} \frac{\mathrm{q}}{\mathrm{r}^{2}} \\
& \mathrm{E}=\frac{\mathrm{V}}{\mathrm{~d}}
\end{aligned}
$$

' $V$ ' is the voltage and ' $d$ ' is the distance
34. Electric field intensity at a point
is defined as $\vec{E}=\lim _{q \rightarrow 0} \frac{\vec{F}}{q}$
here what does $\lim _{q \rightarrow 0}$ imply?

Ans: Here q is the test charge which is to be placed at the point where the field is to be determined.
$\lim _{\mathrm{q} \rightarrow 0}$ means that this test charge must be very small, otherwise it will produce its own field so that the field at that point will be changed.
35. Define an electric line of force or electric field line.
Ans: It is defined as "the path along which a unit positive charge would move if it is free to do so."
36. Draw the electric field lines due to (i) an isolated positive charge
(ii) an isolated negative charge
(iii) an electric dipole
(iv) Two positive charges

Ans:

39. Figure below shows the electric field lines for two point charges separated by a small distance.

(a) Determine the ratio $\frac{q_{1}}{q_{2}}$
(b) What are the signs of $q_{1}$ and $q_{2}$ ?

## ELECTRIC DIPOLE

40. What is an electric dipole?

Ans: Two equal and opposite charges separated by a small distance is called an electric dipole.

41. Define electric dipole moment.

Ans: Electric dipole moment is defined as the product of magnitude of one of the charges and length of the dipole.
Electric dipole moment $\overrightarrow{\mathrm{p}}=\mathrm{q} \times 2 \mathrm{ap}$
Electric dipole moment is a vector quantity.
42. What is the direction of electric dipole moment?
Ans: Electric dipole moment is directed from negative charge to the positive charge.
43. What is the SI unit of electric dipole moment?
Ans: coulomb- meter (Cm)

44[P]. A system has two charges $\mathrm{q}_{\mathrm{A}}=2.5 \times 10^{-7} \mathrm{C}$ and $\mathrm{q}_{\mathrm{B}}=-2.5 \times 10^{-7} \mathrm{C}$ located at points $A(0,0,-15 \mathrm{~cm})$ and B ( $0,0,+15 \mathrm{~cm})$, respectively. What are the total charge and electric dipole moment of the system?
45. Derive the expression for the torque acting on an electric dipole placed in a uniform electric field.
Ans: Consider an electric dipole of dipole moment $\vec{p}=q \times 2 a p$, placed in a uniform electric field.


Because of the two equal and opposite forces acting at the two ends of the dipole, a torque is experienced by the dipole. So the dipole will rotate till it becomes parallel to the electric field.

Torque,
$\tau=$ Force $\perp^{\text {r }}$ distance
$=q E \times B C$
$=q E \times 2 \mathrm{a} \sin \theta$
$=(q \times 2 a) E \sin \theta$
$=\mathrm{pE} \sin \theta$
In vector form, $\vec{\tau}=\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{E}}$, The direction of this torque is given by right hand rule.

## $\tau=\mathrm{pE} \sin \theta$

46. What is the maximum value of torque acting on the dipole?
Ans:
When $\theta=90^{\circ}$
torque, $\tau=\mathrm{pE} \sin 90^{\circ}=\mathrm{pE} \times 1=\mathrm{pE}$
This is the maximum value of torque.
47. At what orientations is the dipole placed in a uniform electric field in the (i) the stable equilibrium?
(ii) unstable equilibrium?

Ans: (i) stable equilibrium
When $\theta=0^{\circ}$
torque, $\tau=\mathrm{pE} \sin 0^{\circ}=\mathrm{pE} \times 0=0$
This is the orientation of stable equilibrium.
(ii) unstable equilibrium

When $\theta=180^{\circ}$
torque, $\tau=\mathrm{pE} \sin 180^{\circ}=\mathrm{pE} \times 0=0$
This is the orientation of unstable equilibrium.

## 48. What is the total charge of an electric dipole?

Ans: zero ( $q+-q=0$ )
49. What is the total force on an electric dipole placed in a uniform electric field?
Ans: Zero ( $\mathrm{qE}+\mathrm{qE}=0$ )
50. What happens when an electric dipole is placed in a non- uniform electric field?
Ans: The dipole will have both rotational and translational motion.
The rotational motion will stop, when the dipole becomes parallel to the electric field.
$51[P]$. An electric dipole with dipole moment $4 \times 10^{-9} \mathrm{C} \mathrm{m}$ is aligned at $30^{\circ}$ with the direction of a uniform electric field of magnitude $5 \times 10^{4} \mathrm{NC}^{-1}$. Calculate the magnitude of the torque acting on the dipole.
52. Derive an expression for the electric field at a point on the axial line of an electric dipole
Ans:


Consider an electric dipole of dipole moment $\vec{p}=q \times 2 a p$. We have to find the electric field intensity at a point ' P ' on the axial line of the dipole distant ' $r$ ' from the midpoint of the dipole.
Electric field at $P$ due to the $+q$ charge at A,
$\overrightarrow{\mathrm{E}_{+}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{q}}{(\mathrm{r}+\mathrm{a})^{2}}(-\mathrm{p})$
Similarly the electric field at P due to the -q charge at B ,
$\overrightarrow{\mathrm{E}_{-}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{q}}{(\mathrm{r}-\mathrm{a})^{2}}(\mathrm{p})$

The resultant electric field at P , $\overrightarrow{\mathbf{E}}=\overrightarrow{\mathbf{E}}_{+}+\overrightarrow{\mathbf{E}}-$
$=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{q}}{(\mathrm{r}+\mathrm{a})^{2}}(-\mathrm{p})+\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{q}}{(\mathrm{r}-\mathrm{a})^{2}}(\mathrm{p})$
$=\frac{\mathrm{qp}}{4 \pi \varepsilon_{0}}\left[\frac{1}{(\mathrm{r}-\mathrm{a})^{2}}-\frac{1}{(\mathrm{r}+\mathrm{a})^{2}}\right]$
$=\frac{\mathrm{qp}}{4 \pi \varepsilon_{0}}\left[\frac{(\mathrm{r}+\mathrm{a})^{2}-(\mathrm{r}-\mathrm{a})^{2}}{(\mathrm{r}-\mathrm{a})^{2}(\mathrm{r}+\mathrm{a})^{2}}\right]$
$=\frac{\mathrm{qp}}{4 \pi \varepsilon_{0}}\left[\frac{\left(\mathrm{r}^{2}+2 \mathrm{ra}+\mathrm{a}^{2}\right)-\left(\mathrm{r}^{2}-2 \mathrm{ra}+\mathrm{a}^{2}\right)}{[(\mathrm{r}-\mathrm{a})(\mathrm{r}+\mathrm{a})]^{2}}\right]$
$=\frac{\mathrm{qp}}{4 \pi \varepsilon_{0}}\left[\frac{4 \mathrm{ra}}{\left(\mathrm{r}^{2}-\mathrm{a}^{2}\right)^{2}}\right]$
$=\frac{1}{4 \pi \varepsilon_{0}} \frac{2(\mathrm{q} \times 2 \mathrm{a}) \mathrm{rp}}{\left(\mathrm{r}^{2}-\mathrm{a}^{2}\right)^{2}}$
$=\frac{1}{4 \pi \varepsilon_{0}} \frac{2 \mathrm{prp}}{\left(\mathrm{r}^{2}-\mathrm{a}^{2}\right)^{2}}$
If $r^{2} \gg a^{2}, a^{2}$ can be neglected, then
$\overrightarrow{\mathrm{E}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{2 \mathrm{p}}{\mathrm{r}^{3}} \mathrm{p}$

$$
\overrightarrow{\mathrm{E}}=\frac{1}{4 \pi \varepsilon_{o}} \frac{2 \mathbf{p}}{\mathbf{r}^{3}} \hat{\mathbf{p}}
$$

53. Derive an expression for the electric field at a point on the equatorial line of an electric dipole.
Ans:


Consider an electric dipole of dipole moment $\vec{p}=q \times 2 a p$. We have to find the electric field intensity at a
point ' P ' on the equatorial line of the dipole distant ' $r$ ' from the midpoint of the dipole.
Electric field at $P$ due to the $+\mathbf{q}$ charge at A,
$\mathrm{E}_{+}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{q}}{\mathrm{r}^{2}+\mathrm{a}^{2}}$

## Similarly the electric field at $P$ due to the $-q$ charge at $B$,

$E_{-}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r^{2}+a^{2}}$
$\mathbf{E}_{+}$can be split in to two components $\mathbf{E}_{+} \boldsymbol{\operatorname { c o s }} \boldsymbol{\theta}$ and $\mathbf{E}_{+} \boldsymbol{\operatorname { s i n }} \boldsymbol{\theta}$. Similarly $\mathbf{E}$. can be split in to components E.cos帾 and $\mathbf{E}_{-} \boldsymbol{\operatorname { s i n }} \boldsymbol{\theta}$. The $\mathbf{E}_{+} \boldsymbol{\operatorname { s i n }} \boldsymbol{\theta}$ and $\mathbf{E} \sin \boldsymbol{\theta}$ components cancel each other being equal and opposite. The $\mathbf{E}_{+} \boldsymbol{\operatorname { c o s }} \boldsymbol{\theta}$ and E.cose components add together.

Resultant electric field at P is given by,

$$
\mathbf{E}=\mathbf{E}_{+} \cos \theta+\mathbf{E}_{-} \cos \theta
$$

$\mathrm{E}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{q}}{\mathrm{r}^{2}+\mathrm{a}^{2}} \cos \theta+\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{q}}{\mathrm{r}^{2}+\mathrm{a}^{2}} \cos \theta$
From figure, $\cos \theta=\frac{a}{\left(r^{2}+a^{2}\right)^{\frac{1}{2}}}$
$\mathrm{E}=2 \times \frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{q}}{\mathrm{r}^{2}+\mathrm{a}^{2}} \frac{\mathrm{a}}{\left(\mathrm{r}^{2}+\mathrm{a}^{2}\right)^{1 / 2}}$
$=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{q} \times 2 \mathrm{a}}{\left(\mathrm{r}^{2}+\mathrm{a}^{2}\right)^{3 / 2}}$
$\mathrm{E}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{p}}{\left(\mathrm{r}^{2}+\mathrm{a}^{2}\right)^{3 / 2}}$
If $\mathrm{r}^{2} \gg \mathrm{a}^{2}, \mathrm{a}^{2}$ can be neglected, then
$\mathrm{E}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{p}}{\mathbf{r}^{3}}$
In vector form,

$$
\overrightarrow{\mathrm{E}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{p}}{\mathrm{r}^{3}}(-\hat{\mathrm{p}})
$$

54. Compare the electric fields on the axial and equatorial lines of an electric dipole .
Ans: (i) $\mathbf{E}_{\text {axial }}=\mathbf{2} \times \mathbf{E}_{\text {equatorial }}$
(ii) Both the fields are inversely proportional to $r^{3}$
(iii) The direction of $\mathbf{E}_{\text {axial }}$ is parallel to electric dipole moment and that of $\mathbf{E}_{\text {equatorial }}$ is antiparallel to electric dipole moment.

## ELECTRIC FLUX

## 55. Define electric flux.

Ans: Electric flux is defined as the total number of electric field lines passing normally through a surface.

Electric flux through small area ds is defined as,

$$
\mathrm{d} \phi=\overrightarrow{\mathrm{E}} \bullet \overrightarrow{\mathrm{dS}}
$$



The total electric flux through the surface $\mathbf{S}$ is given by
$\phi=\oint \overrightarrow{\mathrm{E}} \bullet \overrightarrow{\mathrm{dS}}$
If the surface $S$ is a plane surface, then the total electric flux is
$\phi=\overrightarrow{\mathrm{E}} \bullet \overrightarrow{\mathrm{S}}$
$=\mathrm{ES} \cos \theta$
56. Give the SI unit of electric flux.

Ans: $\mathrm{Nm}^{2} / \mathrm{C}$ or Vm

57[P]. Consider a uniform electric field $\mathrm{E}=3 \times 10^{3} \hat{i} \mathrm{~N} / \mathrm{C}$. (a) what is the
flux of this field through a square of 10 cm on a side whose plane is parallel to the yz plane? (b) What is the flux through the same square if the normal to its plane makes a $60^{\circ}$ angle with the x -axis?
$\mathbf{5 8}[\mathrm{P}]$. What is the net flux of the uniform electric field of above problem through a cube of side 20 cm oriented so that its faces are parallel to the coordinate planes?
59. Define the three charge densities.
Ans: The three different charge densities are:
(i)Linear charge

## density( 1 )

It is the charge per unit
length. $\lambda=\frac{\mathrm{q}}{\ell}$
SI unit is C/m
(ii) Surface charge density ( $\sigma$ )
It is the charge per unit area $\sigma=\frac{\mathrm{q}}{\mathrm{A}}$
SI unit is $\mathrm{C} / \mathrm{m}^{2}$
(iii) Volume charge density ( $\rho$ )
It is the charge per unit volume. $\rho=\frac{q}{V}$
SI unit is $\mathrm{C} / \mathrm{m}^{3}$
60. A spherical conducting shell of inner radius $r_{1}$ and outer radius $r_{2}$ has
a charge ' $Q$ '. A charge ' $q$ ' is placed at the centre of the shell.
(a) What is the surface charge density on the (i) inner surface, (ii) outer surface of the shell?
(b) Write the expression for the electric field at a point $x>r_{2}$ from the centre of the shell.

## GAUSS'S THEOREM

61. State Gauss's theorem in electrostatics.
Ans: Gauss's theorem states that " the total electric flux over a closed surface enclosing a charge is equal to $1 / \varepsilon_{0}$ times the net charge enclosed."
Mathematically Gauss's theorem can be stated as $\phi=\frac{\mathbf{1}}{\boldsymbol{\varepsilon}_{\mathbf{o}}} \mathbf{q}$

$$
\Longrightarrow \Phi \overrightarrow{\mathrm{E}} \bullet \overrightarrow{\mathrm{dS}}=\frac{\mathbf{q}}{\varepsilon_{\mathrm{o}}}
$$

## 62. Prove Gauss's theorem.

Ans: Consider a point charge q placed at a point. Imagine a sphere of radius $r$ with q as the centre.
The total electric flux through the sphere,

$\oint \overrightarrow{\mathrm{E}} \bullet \overrightarrow{\mathrm{dS}}$
$=\oint \mathrm{EdS} \cos 0(\because \overrightarrow{\mathrm{E}} \| \overrightarrow{\mathrm{dS}})$
$=\oint E d S$
$=\mathrm{E} \oint \mathrm{dS}$
$=\mathrm{E} \times 4 \pi \mathrm{r}^{2}$
At the surface of the sphere,
$\mathrm{E}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{q}}{\mathrm{r}^{2}}$
$\therefore \oint \overrightarrow{\mathrm{E}} \bullet \overrightarrow{\mathrm{dS}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{q}}{\mathrm{r}^{2}} \times 4 \pi \mathrm{r}^{2}$

$$
=\frac{\mathrm{q}}{\varepsilon_{0}}
$$

## 63. What is a Gaussian surface?

Ans: An imaginary surface enclosing a charge is called a Gaussian surface. A Gaussian surface can be a surface of any shape.
64. Figure shows three point charges, $+2 q,-q$ and $+3 q$.Two charges $+2 q$ and $-q$ are enclosed in a surface ' $S$ '. What is the electric flux due to this configuration through the surface ' $S$ '?

$65[\mathrm{P}]$. A point charge $+10 \mu \mathrm{C}$ is at a distance 5 cm directly above the centre of a square of side 10 cm , as shown in Fig. What is the magnitude of the electric flux through the
square? (Hint: Think of the square as one face of a cube with edge 10 cm )

$66[\mathrm{P}]$. A point charge of $2.0 \mu \mathrm{C}$ is at the centre of a cubic Gaussian surface 9.0 cm on edge. What is the net electric flux through the surface?

67[P]. A point charge causes an electric flux of $-1.0 \times 10^{3} \mathrm{Nm}^{2} / \mathrm{C}$ to pass through a spherical Gaussian surface of 10.0 cm radius centred on the charge. (a) If the radius of the Gaussian surface were doubled, how much flux would pass through the surface?
(b) What is the value of the point charge?

68[P]. A uniformly charged conducting sphere of 2.4 m diameter has a surface charge density of 80.0 $\mu \mathrm{C} / \mathrm{m}^{2}$. (a) Find the charge on the sphere. (b) What is the total electric flux leaving the surface of the sphere?
69. Derive Coulomb's law from Gauss's theorem.
Ans: By Gauss's theorem,

$$
\oint \overrightarrow{\mathrm{E}} \bullet \overrightarrow{\mathrm{dS}}=\frac{\mathrm{q}}{\varepsilon_{0}}
$$


$\oint E d S \cos 0=\frac{\mathrm{q}}{\varepsilon_{0}} \quad(\because \overrightarrow{\mathrm{E}} \| \overrightarrow{\mathrm{dS}})$
$\Rightarrow \oint \mathrm{EdS}=\frac{\mathrm{q}}{\varepsilon_{0}}$
$\Rightarrow \mathrm{E} \oint \mathrm{dS}=\frac{\mathrm{q}}{\varepsilon_{0}}$
$\Rightarrow \mathrm{E} \times 4 \pi \mathrm{r}^{2}=\frac{\mathrm{q}}{\varepsilon_{0}}$
$\therefore \mathrm{E}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{q}}{\mathrm{r}^{2}}$
this is the electric field at the surface of the sphere.
If we place another ch arge $\delta q$ on the surface of the sphere, then force acting on it is
$\mathrm{F}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{q} \delta \mathrm{q}}{\mathrm{r}^{2}}$ This is Coulomb's law.
70. By applying Gauss's theorem deduce the expression for electric field due to a spherical shell of charge (hollow sphere) density $\sigma$.
Ans: Consider a shell of radius R and charge density $\sigma$. We have to find the electric field at a point distant $r$ from the centre of this shell. For this we imagine a Gaussian sphere of radius $r$, concentric with the given shell of charge and passing through $P$.

## Case(i): E.F.Outside the shell



The total Electric flux through the Gaussian sphere,
$\oint \overrightarrow{\mathrm{E}} \bullet \overrightarrow{\mathrm{dS}}$
$=\oint E d S \cos O \quad(\because \overrightarrow{\mathrm{E}} \| \overrightarrow{\mathrm{dS}})$
$=\oint \mathrm{EdS}$
$=\mathrm{E} \oint \mathrm{d} \mathrm{S}$
$=\mathrm{E} \times 4 \pi \mathrm{r}^{2}$
The charge enclosed by the Gaussian sphere, $\mathrm{q}=\mathrm{A} \sigma=4 \pi \mathrm{R}^{2} \sigma$
Applying Gauss's theorem,
$\oint \overrightarrow{\mathrm{E}} \bullet \overrightarrow{\mathrm{dS}}=\frac{\mathrm{q}}{\varepsilon_{0}}$
$\mathrm{E} \times 4 \pi \mathrm{r}^{2}=4 \pi \mathrm{R}^{2} \sigma$
$\mathrm{E}=\frac{\mathrm{R}^{2} \sigma}{\varepsilon_{0} \mathrm{r}^{2}}$

$$
\mathrm{E}=\frac{\mathrm{R}^{2} \sigma}{\varepsilon_{0}{ }^{2}{ }^{2}}
$$

## Case(ii): E.F. on the shell

 Put $r=R$$\mathrm{E}=\frac{\mathbf{R}^{2} \sigma}{\varepsilon_{0} \mathbf{R}^{2}}=\frac{\sigma}{\varepsilon_{0}}$
$\mathrm{E}=\frac{\sigma}{\varepsilon_{\mathrm{o}}}$

$$
\mathrm{E}=\frac{\sigma}{\varepsilon_{0}}
$$

Case(iii) E.F.inside the shell


In this case the charge enclosed by the Gaussian sphere, $\mathrm{q}=0$
$\therefore$ Substituting in Gauss's theorem
$\mathrm{E} \times 4 \pi \mathrm{r}^{2}=\frac{0}{\varepsilon_{0}}$
$\Rightarrow \mathrm{E}=0$. The electric field inside a sperical shell of charge is zero.

## 71. What is meant by electrostatic shielding?

Ans:
Electric field inside the cavity of a conductor of any shape is zero. This is called electrostatic shielding.


72[Q]. Draw the variation of electric field intensity of a shell of radius R with distance $r$.
73. During lightning, a person inside a car is safer than outside. Why?

Ans: This is due to electrostatic shielding. Due to electrostatic
shielding, electric field inside the car is zero.
73. By applying Gauss's theorem, derive an expression for the electric field due to a straight infinitely long charged wire (line charge) of charge density $\lambda$.
Ans:

Consider an infinitely long straight wire of charge density $\lambda$. We have to find the electric field at a point $P$ distant ' $r$ ' from this line charge. For this imagine a Gaussian cylinder of radius ' $r$ ' and length ' $l$ ' with the line charge as the axis.


The total electric flux,

$=\int_{\substack{\text { curved } \\ \text { surface }}} \overrightarrow{\mathrm{E}} \bullet \overrightarrow{\mathrm{dS}}+\int_{\substack{\text { end } \\ \text { faces }}} \overrightarrow{\mathrm{E}} \bullet \overrightarrow{\mathrm{dS}}$
$=\int_{\substack{\text { cerved } \\ \text { surface }}} \mathrm{EdS} \cos 0^{\circ}+\int_{\substack{\text { end } \\ \text { faces }}} \mathrm{EdS} \cos 90^{\circ}$
$=\int_{\substack{\text { curred } \\ \text { surface }}} \mathrm{EdS}+\int_{\substack{\text { end } \\ \text { faces }}} \mathrm{EdS} \times 0$
$=\mathrm{E} \int_{\substack{\text { curved } \\ \text { surface }}} \mathrm{dS}$
$=\mathrm{E} \times 2 \pi \mathrm{r} \ell$
The charge enclosed by the Gaussian cylinder, $\mathrm{q}=\ell \lambda$
Applying Gauss's theorem,
$\oint \overrightarrow{\mathrm{E}} \bullet \overrightarrow{\mathrm{dS}}=\frac{\mathrm{q}}{\varepsilon_{0}}$
$\mathrm{E} \times 2 \pi \mathrm{r} \ell=\frac{\ell \lambda}{\varepsilon_{0}}$
$E=\frac{\lambda}{2 \pi \varepsilon_{0} r}$

$$
\mathrm{E}=\frac{\lambda}{2 \pi \varepsilon_{0} \mathrm{r}}
$$

74[P]. An infinite line charge produces a field of $9 \times 10^{4} \mathrm{~N} / \mathrm{C}$ at a distance of 2 cm . Calculate the linear charge density.
75. Applying Gauss's theorem find an expression for the electric field due to an infinitely large plane sheet of charge density ' $\sigma$ '
Ans: Consider an infinitely large plane sheet of charge density $\lambda$. We have to find the electric field at a point P distant ' $r$ ' from this plane sheet of charge. For this imagine a Gaussian cylinder of small area of cross section with one end passing through the point P , penetrating the sheet and extending to both sides equally.


The total electric flux through the Gaussian cylinder,
$\oint_{\mathrm{s}} \overrightarrow{\mathrm{E}} \bullet \overrightarrow{\mathrm{dS}}$
$=\int_{\substack{\text { curred } \\ \text { surface }}} \overrightarrow{\mathrm{E}} \bullet \overrightarrow{\mathrm{dS}}+\int_{\substack{\text { end } \\ \text { faces }}} \overrightarrow{\mathrm{E}} \bullet \overrightarrow{\mathrm{dS}}$
$=\int_{\substack{\text { curved } \\ \text { surface }}} \mathrm{EdS} \cos 90^{\circ}+\int_{\substack{\text { end } \\ \text { faces }}} \mathrm{EdS} \cos 0^{\circ}$
$=\int_{\substack{\text { curved } \\ \text { surface }}} \mathrm{EdS} \times 0+\int_{\substack{\text { end } \\ \text { faces }}} \mathrm{EdS} \times 1$
$=\mathrm{E} \int_{\substack{\text { end } \\ \text { faces }}} \mathrm{dS}$
$=\mathrm{E} \times 2 \mathrm{~A}$
The charge enclosed by the Gaussian cylinder, $\mathbf{q}=\mathrm{A} \sigma$
Applying Gauss's theorem,
$\oint \overrightarrow{\mathrm{E}} \bullet \overrightarrow{\mathrm{dS}}=\frac{\mathrm{q}}{\varepsilon_{0}}$
$\mathrm{E} \times 2 \mathrm{~A}=\frac{\mathrm{A} \sigma}{\varepsilon_{0}}$
$\mathrm{E}=\frac{\sigma}{2 \varepsilon_{0}}$

$$
\mathrm{E}=\frac{\sigma}{2 \varepsilon_{0}}
$$

76. Find the expressions for the electric field due to two infinitely large parallel plane sheets of equal and opposite charge densities.

Ans: Consider two infinitely large plane parallel sheets having charge densities $+\sigma$ and $-\sigma$.


Electric field due to a single sheet,
$\mathrm{E}=\frac{\sigma}{2 \varepsilon_{0}}$

## In Region I

$\mathrm{E}_{\mathrm{I}}=-\mathrm{E}+\mathrm{E}=0$
In Region II

$$
\begin{aligned}
\mathrm{E}_{\mathrm{II}} & =\mathrm{E}+\mathrm{E} \\
& =\frac{\sigma}{2 \varepsilon_{0}}+\frac{\sigma}{2 \varepsilon_{0}}=2 \frac{\sigma}{2 \varepsilon_{0}}=\frac{\sigma}{\varepsilon_{0}}
\end{aligned}
$$

## In Region III

$\mathrm{E}_{\text {III }}=\mathrm{E}+(-\mathrm{E})=0$

77[P]. Two charge, thin metal plates are parallel and close to each other. On their inner faces, the plates have surface charge densities of opposite signs and of magnitude $17.0 \times 10^{-22}$ $\mathrm{C} / \mathrm{m}^{2}$. What is E : (a) in the outer region of the first plate, (b) in the outer region of the second plate, and (c) between the plates?

