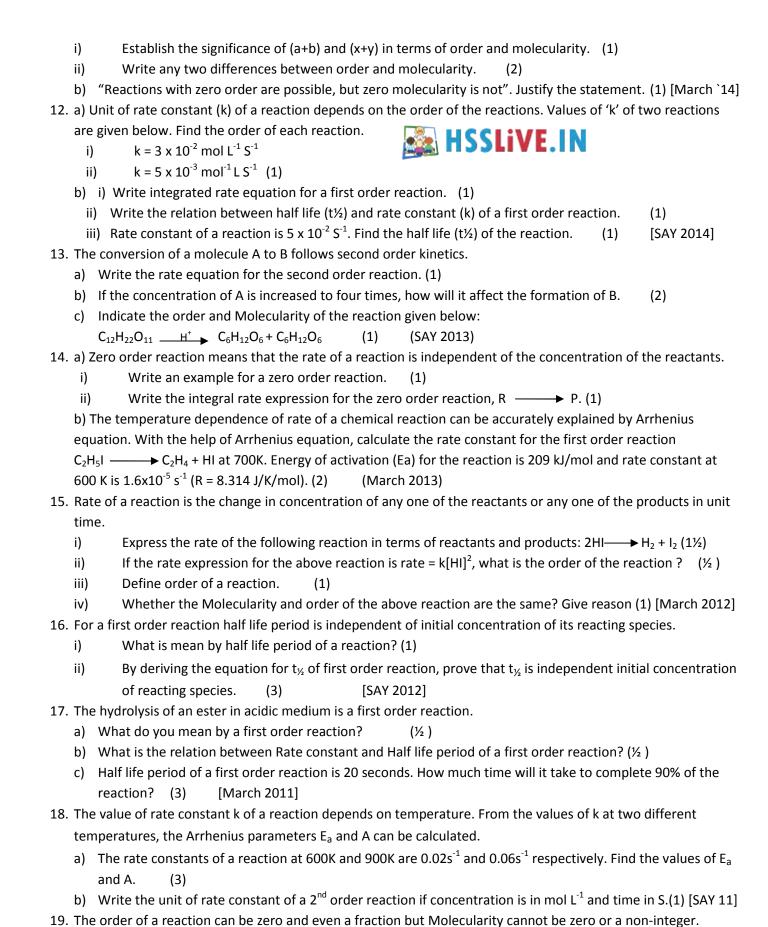
CHEMICAL KINETICS- Previous HSE Questions

- 1. The rate of a reaction quadruples when the temperature changes from 293 K to 313 K. Calculate the energy of activation of the reaction assuming that it does not change with temperature. (3)
- 2. What is the order of a reaction, if its half life is independent of initial concentration? (1) [SAY 2018]
- 3. For hydrolysis of methyl acetate in aqueous solution, the following results were observed.

t/s	0	30	60	Į
CH₃COOH C/mol L ⁻¹	0.60	0.30	0.15	

Show that it follows pseudo first order reaction as the concentration of water remains constant. (3)


- 4. Identify the order of reaction if the unit of rate constant is mol L⁻¹ s⁻¹. (1) [March 2018]
- 5. The effect of temperature on rate of reaction is given by Arrhenius equation.
 - i) Write Arrhenius equation. (1)
 - ii) Define activation energy (Ea) (1)
 - iii) Rate constant k_2 of a reaction at 310K is two times of its rate constant k_1 at 300 K. Calculate activation energy of the reaction. (log 2 = 0.3010 and log 1 = 0) [SAY 2017]
- 6. a) Plot a graph showing variation in the concentration of reactants against time for a zero order reaction. (1)
 - b) What do you mean by zero order reaction? (1)
 - c) The initial concentration of the first order reaction, $N_2O_5(g) \longrightarrow 2 NO_2(g) + \frac{1}{2} O_2(g)$, was 1.24 x 10^{-2} mol L⁻¹ at 300 K. The concentration of N_2O_5 after 1 hour was 0.20 x 10^{-2} mol L⁻¹. Calculate the rate constant of the reaction at 300 K. (2) [March 2017]
- 7. Rate of a reaction is the change in concentration of any one of the reactants or products in unit time.
 - a) Express the rate of the following reaction in terms of reactants and products

$$2NO(g) + O_2(g) \rightarrow 2NO_2(g)$$
 (1)

- b) (i) $N_2O_5(g) \rightarrow 2NO_2(g) + \frac{1}{2}O_2(g)$ is a first order reaction. Find the unit of k. (1)
 - (ii) Calculate the time required for the completion of 90% of a first order reaction. ($k = 0.2303 \text{ s}^{-1}$) (2) [SAY 2016]
- 8. (i) The molecularity of the reaction $2NO + O_2 \rightarrow 2NO$, is,

- (ii) What do you mean by rate of a reaction? (1)
- (iii) What will be the effect of temperature on rate of a reaction? (1)
- (iv) A first order reaction is found to have a rate constant, $k = 5.5 \times 10^{-14} \text{ s}^{-1}$. Find out the half-life of the reaction. (1) [March 2016]
- 9. Integrated rate expression for rate constant of a first order reaction R \rightarrow P is given by k = $\frac{2.303}{t} \log \frac{[R]_0}{[R]}$
 - i) Derive an expression for half life period of first order reaction. (2)
 - ii) A first order reaction has a rate constant $1.15 \times 10^{-3} \text{ s}^{-1}$. How long will 5 g of the reactant take to reduce 3g? [SAY 2015]
- 10. The terms order and molecularity are common in chemical kinetics.
 - a) What do you mean by order and molecularity? (2)
 - b) i) Write two factors influencing rate of a reaction. (1)
 - ii) Write Arrhenius equation. (1) [March 2015]
- 11. a) Consider a general reaction $aA + bB \rightarrow cC + dD$. The rate expression for the reaction is $r = k[A]^x[b]^y$

Chemical Kinetics Page 1

Chemical Kinetics Page 2

What do you mean by the order of a reaction? (1)

- ii) What is Molecularity of a reaction? (1)
- iii) The conversion of molecules A to B follows second order kinetics. If concentration of A is increased to three times, how will it affect the rate of formation of B? (2) [March 2010]
- 20. The value of rate constant k of a reaction depends on temperature. From the values of k at two different temperatures, the Arrhenius parameters E_a and A can be calculated.
 - The rate constants of a reaction at 1000K and 1060K are $0.01M^{-1}S^{-1}$ and $0.10M^{-1}S^{-1}$ respectively. Find the values of E_a and A. (3) [March 2010]
- 21. Unit of rate constant (k) of a reaction depends on the order of the reaction. If concentration is expressed in mol L⁻¹ and time in seconds (s), find the unit of k for zero, first and second order reaction. (3) [March 2009]
- 22. An archeological substance contained wood had only 66.66% of the 14 C found in a tree. Calculate the age of the sample if the half life of 14 C is 5730 years. (3) [March 2008]

Chemical Kinetics Page 3